T spécialité

Interrogation écrite du vendredi 15 mars 2024

Fiche

30 minutes

	Numéro :	Prénom et nom :	Note: / 20
	(4 points) n considère la fon	ction $f: x \mapsto \ln(2 + e^x)$ définie sur \mathbb{R} . Déterminer $\lim_{x \to -\infty} f(x)$.	
II	. (6 points : 1°) 1	point; 2°) 2 points; 3°) 3 points)	
		ction f définie sur \mathbb{R} par $f(x) = 1 - x^2$ si $x < 1$ et $f(x) = \ln x$ si $x > 1$ sucune justification n'est demandée.	≽ 1.
		an de la calculatrice la courbe représentative de la fonction f . e penser que f est continue sur $\mathbb R$?	
 2°	(r) Quels sont les a	ntécédents de 1 par f ?	
3° pa	e) Écrire une fonct ar f. On suppose av	ion Python d'en-tête def f(x): qui prend pour argument un réel voir importé préalablement la fonction l og de la bibliothèque math	x et qui renvoie l'image de x

III. (3 points : 1°) 2 points ; 2°) 1 point)

On considère les fonctions $f: x \mapsto (x - E(x))^2 + E(x)$ et $g: x \mapsto x \times (-1)^{E(x)} + x^2$ définies sur \mathbb{R} .

1°) Tracer leurs représentations graphiques sur l'écran de la calculatrice. Le tracé permet-il de penser que :			
• f est continue sur \mathbb{R} ? \square oui \square non • g est continue sur \mathbb{R} ? \square oui \square non			
2°) Calculer $g(-\pi)$. On donnera la valeur exacte.			
(une seule égalité)			
IV. (7 points : 1°) 4 points + 2 points pour la rédaction, l'orthographe, le soin, les notations ; 2°) 1 point)			
On considère la fonction $f: x \mapsto \ln x \times \ln(x+1)$ définie sur l'intervalle $]0; +\infty[$. On admet que f est strictement croissante sur $]0; +\infty[$.			
1°) On pose $I = [3; 4]$. Démontrer qu'il existe un unique réel $c \in I$ dont l'image par f est égale à 2. Rédiger avec le plus grand soin selon le modèle étudié, en écrivant une idée par ligne.			
2°) À l'aide de la calculatrice, encadrer c par deux décimaux consécutifs d'ordre 3.			

Consigne donnée à l'oral

II. (6 points : 1°) 1 point ; 2°) 2 points ; 3°) 3 points)

1°) On ne répond pas par oui ou non (et l'on ne commence pas une phrase de réponse par oui ou non).

On attend une réponse rédigée sur le modèle :

« Le tracé permet de penser que f est continue sur \mathbb{R} . »

ou

« Le tracé permet de penser que f n'est pas continue sur $\mathbb{R}.$ »

Corrigé de l'interrogation écrite du 15-3-2024

I.

On considère la fonction $f: x \mapsto \ln(2 + e^x)$ définie sur \mathbb{R} . Déterminer $\lim_{x \to -\infty} f(x)$.

$$\lim_{x \to -\infty} \left(\underbrace{2 + e^x}_{x} \right) = 2$$

$$\lim_{x \to 2} \ln x = \ln 2$$
donc par limite d'une composée, $\lim_{x \to -\infty} f(x) = \ln 2$.

Autre idée (moins bonne):

$$\lim_{x \to -\infty} \left(\underbrace{e^{x}_{X}} \right) = 0$$

$$\lim_{x \to 0} \ln(2 + X) = \ln 2$$
donc par limite d'une composée, $\lim_{x \to -\infty} f(x) = \ln 2$.

On vérifie cette limite graphiquement en traçant la courbe représentative de f sur l'écran de la calculatrice. La courbe admet la droite d'équation $y = \ln 2$ pour asymptote horizontale en $-\infty$.

II.

On considère la fonction f définie sur \mathbb{R} par $f(x) = 1 - x^2$ si x < 1 et $f(x) = \ln x$ si $x \ge 1$. Dans cet exercice, aucune justification n'est demandée.

1°) Tracer sur l'écran de la calculatrice la courbe représentative de la fonction f. Le tracé permet-il de penser que f est continue sur \mathbb{R} ?

Le tracé permet de penser que f est continue sur \mathbb{R} .

 2°) Quels sont les antécédents de 1 par f?

On résout dans \mathbb{R} l'équation f(x) = 1 (1).

(1)
$$\Leftrightarrow$$

$$\begin{cases} 1 - x^2 = 1 \\ x < 1 \end{cases}$$
 ou
$$\begin{cases} \ln x = 1 \\ x \geqslant 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = 0 \\ x < 1 \end{cases} \text{ ou } \begin{cases} x = e \\ x \ge 1 \end{cases}$$

$$\Leftrightarrow x = 0$$
 ou $x = e$

3°) Écrire une fonction Python d'en-tête def f(x): qui prend pour argument un réel x et qui renvoie l'image de x par f. On suppose avoir importé préalablement la fonction I og de la bibliothèque math.

1^{ère} proposition:

```
def f(x) :
    if x<1 :
        return 1-x**2
    else:
        return log(x)</pre>
```

2^e proposition:

```
def f(x) :
    if x<1 :
        y=1-x**2
    else:
        y=log(x)
    return y</pre>
```

On aurait pu proposer un script sans écrire de fonction.

```
x=float(input('Entrer le nombre :'))
if x<1 :
print(1-x**2)
else:
print(log(x))</pre>
```

III.

On considère les fonctions $f: x \mapsto (x - E(x))^2 + E(x)$ et $g: x \mapsto x \times (-1)^{E(x)} + x^2$ définies sur \mathbb{R} .

1°) Tracer leurs représentations graphiques sur l'écran de la calculatrice.

Le tracé permet-il de penser que :

• f est continue sur \mathbb{R} ? \blacksquare oui

 \square non

• g est continue sur \mathbb{R} ? \square oui

⋈ non

La courbe représentative de f est constituée d'arcs de parabole, ou pour mieux dire, la courbe représentative de f est la réunion d'une infinité d'arcs de parabole.

 2°) Calculer $g(-\pi)$. On donnera la valeur exacte.

$$g(-\pi) = \pi^2 - \pi$$
 (une seule égalité)

$$g(-\pi) = -\pi \times (-1)^{E(-\pi)} + (-\pi)^{2}$$

$$= -\pi \times (-1)^{-4} + \pi^{2}$$

$$= -\pi \times 1 + \pi^{2}$$

$$= -\pi + \pi^{2}$$

$$= \pi^{2} - \pi \text{ (valeur exacte)}$$

On vérifie le résultat à l'aide de la calculatrice.

IV.

On considère la fonction $f: x \mapsto \ln x \times \ln(x+1)$ définie sur l'intervalle $]0; +\infty[$. On admet que f est strictement croissante sur $]0; +\infty[$.

1°) On pose I = [3; 4]. Démontrer qu'il existe un unique réel $c \in I$ dont l'image par f est égale à 2. Rédiger avec le plus grand soin selon le modèle étudié, en écrivant une idée par ligne.

On utilise la « méthode des 3 C ».

 $C_1: f$ est continue sur l'intervalle]0; $+\infty[$ (comme produit de fonctions continues sur cet intervalle) donc, par restriction, sur l'intervalle I, car $I \subset]0$; $+\infty[$

On peut justifier la continuité de f sur $]0; +\infty[$ de la manière suivante :

La fonction $u: x \mapsto \ln x$ est continue sur $]0; +\infty[$ (fonction de référence).

La fonction $v: x \mapsto \ln(x+1)$ est continue sur $]0; +\infty[$ (composée de fonctions continues).

Par produit, f est continue sur $]0; +\infty[$.

 C_2 : On a $f(3) = \ln 3 \times \ln 4$ et $f(4) = \ln 4 \times \ln 5$.

La calculatrice donne f(3) = 1,523000021... et f(4) = 2,231154703..., ce qui permet de voir que $2 \in [f(3); f(4)]$ (autrement dit, 2 est une « valeur intermédiaire »).

 $C_3: f$ est strictement croissante sur l'intervalle $]0; +\infty[$ donc, par restriction, sur l'intervalle I.

D'après le corollaire du théorème des valeurs intermédiaires, on peut affirmer que l'équation qu'il existe un unique réel $c \in I$ dont l'image par f est égale à 2.

Les conditions C_1 et C_2 assurent l'existence de ce réel ; la condition C_3 assure son unicité.

Il n'est pas possible de déterminer la valeur exacte de c.

Comme les images de 3 et 4 par f sont différentes de 2, on peut affirmer que 3 < c < 4.

2°) À l'aide de la calculatrice, encadrer c par deux décimaux consécutifs d'ordre 3.

En résolvant l'équation f(x) = 2 avec la calculatrice (équation qui s'écrit $\ln x \times \ln(x+1) = 2$), on obtient l'affichage : 3,664557.

Il n'y a aucun moyen de résoudre l'équation de manière exacte. On ne peut donc pas donner la valeur exacte de c.