T exp

Devoir pour le jeudi 16 mars 2023

On considère la suite (u_n) définie sur \mathbb{N} par ses deux premiers termes $u_0 = 0$ et $u_1 = 1$ ainsi que par la relation de récurrence $u_{n+2} = u_{n+1} + u_n$ pour tout entier naturel n.

On admet que u_n est un entier naturel pour tout entier naturel n. On ne cherchera pas à l'exprimer en fonction de n.

1°) Recopier et compléter le tableau suivant :

n	0	1	2	3	4	5	6	7	8	9	10
u_n											

2°) On pose
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Calculer A², A³, A⁴, A⁵.

On écrira quatre égalités sur une même ligne sans détailler les calculs.

- 3°) Démontrer par récurrence que pour tout entier naturel $n \ge 1$, $A^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$.
- 4°) Soit p et q deux entiers naturels supérieurs ou égaux à 1. En considérant le produit $A^p \times A^q$, démontrer l'égalité : $u_{p+q} = u_p \times u_{q+1} + u_{p-1} \times u_q$.

Vérifier que l'égalité reste vraie pour p entier naturel supérieur ou égal à 1 et q = 0.

L'égalité $u_{p+q} = u_p \times u_{q+1} + u_{p-1} \times u_q$ est donc vraie pour p entier naturel quelconque supérieur ou égal à 1 et q entier naturel quelconque.

5°) Soit n un entier naturel.

À l'aide du résultat de la question précédente, démontrer que :

- si n est impair, u_n peut s'écrire comme somme de deux carrés parfaits ;
- si n est pair, u_n peut s'écrire comme différence de deux carrés parfaits.

Corrigé du devoir pour le 16-3-2023

1°)

n	0	1	2	3	4	5	6	7	8	9	10
u_n	0	1	1	2	3	5	8	13	21	34	55

2°)

$$\mathbf{A}^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{A}^3 = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

$$A^4 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \qquad A^{4} = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \qquad A^{5} = \begin{pmatrix} 8 & 5 \\ 5 & 3 \end{pmatrix}$$

3°) Le but de la question est de démontrer par récurrence que pour tout entier naturel $n \ge 1$, $A^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n+1} \end{pmatrix}$. Les étapes de la récurrence sont données. Il est demandé de compléter les passages manquants.

Pour
$$n \in \mathbb{N}^*$$
, on définit la phrase $P(n) : \ll A^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix} \gg$.

Vérifions que la phrase P(1) est vraie.

On a
$$A^1 = A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
. Or $u_0 = 0$, $u_1 = 1$ et $u_2 = 1$.

On peut donc écrire $A^1 = \begin{pmatrix} u_2 & u_1 \\ u_2 & u_2 \end{pmatrix}$.

Ainsi, la phrase P(1) est vraie.

Considérons un entier naturel $k \ge 1$ tel que la phrase P(k) soit vraie, c'est-à-dire $A^k = \begin{pmatrix} u_{k+1} & u_k \\ u_k & u_{k+1} \end{pmatrix}$.

Démontrons qu'alors la phrase P(k+1) est vraie, c'est-à-dire $A^{k+1} = \begin{pmatrix} u_{k+2} & u_{k+1} \\ u_{k+1} & u_{k+1} \end{pmatrix}$.

$$\mathbf{A}^{k+1} = \mathbf{A}^k \times \mathbf{A}$$

$$= \begin{pmatrix} u_{k+1} & u_k \\ u_k & u_{k-1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} u_{k+1} + u_k & u_{k+1} \\ u_k + u_{k-1} & u_k \end{pmatrix}$$

$$= \begin{pmatrix} u_{k+2} & u_{k+1} \\ u_{k+1} & u_k \end{pmatrix}$$

Ainsi la phrase P(k+1) est vraie.

On en déduit que la phrase P(n) est vraie pour tout entier naturel $n \ge 1$.

3°)

 \bullet On suppose que p et q deux entiers naturels supérieurs ou égaux à 1.

On sait que
$$A^p = \begin{pmatrix} u_{p+1} & u_p \\ u_p & u_{p-1} \end{pmatrix}$$
 et que $A^q = \begin{pmatrix} u_{q+1} & u_q \\ u_q & u_{q-1} \end{pmatrix}$.

Par produit de ces deux matrices, on obtient
$$\mathbf{A}^p \times \mathbf{A}^q = \begin{pmatrix} u_{p+1} \times u_{q+1} + u_p \times u_q & u_{p+1} \times u_q + u_p \times u_{q-1} \\ u_p \times u_{q+1} + u_{p-1} \times u_q & u_p \times u_q + u_{p-1} \times u_{q-1} \end{pmatrix}$$
.

Par ailleurs, on peut écrire que $A^p \times A^q = A^{p+q}$ (propriété des puissances de matrices).

Or
$$A^{p+q} = \begin{pmatrix} u_{p+q+1} & u_{p+q} \\ u_{p+q} & u_{p+q-1} \end{pmatrix}$$
 puisque $p+q$ est un entier naturel supérieur ou égal à 1.

On procède alors par identification des coefficients.

On identifie le coefficient situé sur la 2^e ligne et la 1^{ère} colonne.

On peut donc écrire $u_{p+q} = u_p \times u_{q+1} + u_{p-1} \times u_q$.

• Vérifions que l'égalité reste vraie pour p entier naturel supérieur ou égal à 1 et q = 0.

On sait que $u_0 = 0$ et que et $u_1 = 1$.

De manière évidente, on a bien $u_{p+0} = u_p \times u_{0+1} + u_{p-1} \times u_0$.

5°)

• Soit *n* un entier naturel quelconque impair.

Démontrons que u_n peut s'écrire comme somme de deux carrés parfaits.

On pose n = 2k + 1 où k est un entier naturel.

On peut écrire n = (k+1) + k.

On applique la relation établie à la question 4°) pour p = k + 1 et q = k.

p est un entier naturel supérieur ou égal à 1 et q est un entier naturel.

On obtient
$$u_n = u_{k+1} \times u_{k+1} + u_k \times u_k$$
 soit $u_n = (u_{k+1})^2 + (u_k)^2$.

Comme u_k et u_{k+1} sont des entiers naturels, on en déduit que u_n est la somme de deux carrés parfaits.

• Soit *n* un entier naturel quelconque pair.

Démontrons que u_n peut s'écrire comme différence de deux carrés parfaits.

On pose n = 2k où k est un entier naturel.

 $1^{\text{er}} \text{ cas} : k \geqslant 1$

On peut écrire n = (k+1) + (k-1).

On applique la relation établie à la question 4°) pour p = k + 1 et q = k - 1.

p est un entier naturel supérieur ou égal à 1 et q est un entier naturel.

On a $u_n = u_{k+1} \times u_k + u_k \times u_{k-1}$ soit $u_n = u_k \times (u_{k+1} + u_{k-1})$ (factorisation).

D'après la relation de récurrence qui définit la suite (u_n) , on a $u_{k+1} = u_k + u_{k-1}$ ce qui donne $u_k = u_{k+1} - u_{k-1}$.

On reprend l'égalité $u_n = u_k \times (u_{k+1} + u_{k-1})$ et on remplace u_k par $u_{k+1} - u_{k-1}$.

On obtient $u_n = (u_{k+1} - u_{k-1}) \times (u_{k+1} + u_{k-1})$ soit $u_n = (u_{k+1})^2 - (u_{k-1})^2$ (par identité remarquable).

Comme u_k et u_{k+1} sont des entiers naturels, on en déduit que u_n est la différence de deux carrés parfaits.

 2^{e} cas : k = 0

On a $u_0 = 0$ par définition de la suite (u_n) .

On peut écrire $u_0 = 0^2 - 0^2$ ou, plus généralement, $u_0 = a^2 - a^2$ où a est un entier naturel quelconque.

On peut vérifier les résultats pour des valeurs particulières de n.

Prenons n = 9.

On a $u_9 = 34$.

Par ailleurs, $u_4 = 3$ et $u_5 = 5$.

On constate que $u_9 = (u_4)^2 + (u_5)^2$.

Prenons n = 10.

On a $u_{10} = 55$.

Par ailleurs, $u_6 = 8$ et $u_4 = 3$.

On constate que $u_{10} = (u_6)^2 - (u_4)^2$.