\mathbf{T} experts

Devoir pour le mercredi 10 mars 2021

experts	Devoir pour le mercredi 10 mars 2021	Soit <i>n</i> et <i>m</i> deux entiers naturels supérieurs ou égaux à 1. On considère une matrice A à <i>n</i> lignes et <i>m</i> colonnes dont tous les coefficients sont des réels.
Numéro :	Prénom et nom : Note : / 20	1°) Justifier que le produit [†] AA est possible.
Partie 1		
	produits AB et 'B'A sont possibles.	
		On pose X = ^t AA. Démontrer que X est une matrice symétrique. Indication: Utiliser le résultat énoncé à la fin de la partie 1. On rappelle qu'une matrice est dite symétrique lorsqu'elle est égale à sa transposée.
On pose C = AB et D = Préciser les dimensions		
		2°) Pour tout couple (i, j) d'entiers naturels tels que $1 \le i \le n$ et $1 \le j \le m$, on note $a_{i,j}$ le coefficient de A situé sur la i -ième ligne et dans la j -ième colonne. Pour tout entier naturel i tel que $1 \le i \le m$, on note x_i le coefficient de X situé sur la i -ième ligne et dans la i -ième colonne. Donner l'expression de x_i sous la forme d'une somme.
		(une seule égalité sans justifier)
		Compléter, pour i fixé entre 1 et m , l'équivalence suivante :
		$x_i = 0 \Leftrightarrow \dots$
On admet que ${}^{t}C = D c$	e'est-à-dire que $(AB) = B A$.	

Partie 2

Corrigé du devoir pour le 10-3-2021

Partie 1

Soit n, m, p trois entiers naturels supérieurs ou égaux à 1.

Soit A et B deux matrice rectangulaires à coefficients réels telles que :

A ait *n* lignes et *m* colonnes ;

B ait m lignes et p colonnes.

Expliquer pourquoi les produits AB et ^tB^tA sont possibles.

La matrice A a pour format (n, m) et la matrice B a pour format (m, p).

Le produit AB est possible car le nombre de colonnes de A est égal au nombre de lignes de B.

Le produit 'B'A est possible car le nombre de colonnes de 'B est égal au nombre de lignes de 'A.

On pose C = AB et $D = {}^{t}B{}^{t}A$.

Préciser les dimensions de C et D.

La matrice A a pour format (n, m) et la matrice B a pour format (m, p).

On en déduit que C a pour format (n, p).

On démontre de même que D a pour format (p, n).

On admet que ${}^{t}C = D$ c'est-à-dire que ${}^{t}(AB) = {}^{t}B^{t}A$.

Cette formule se démontre aisément en utilisant la définition du produit de deux matrices.

Partie 2

Soit n et m deux entiers naturels supérieurs ou égaux à 1.

On considère une matrice A à n lignes et m colonnes dont tous les coefficients sont des réels.

1°) Justifier que le produit ^tAA est possible.

Par définition de la transposée d'une matrice, ^tA a *m* lignes et *n* colonnes.

Le nombre de colonnes de 'A étant égal au nombre de lignes de A, on peut affirme que le produit 'AA est possible.

On pose $X = {}^{t}AA$.

Démontrer que X est une matrice symétrique.

Indication : Utiliser le résultat énoncé à la fin de la partie 1. On rappelle qu'une matrice est dite symétrique lorsqu'elle est égale à sa transposée.

On calcule ^tX.

$$(AA)^{\dagger} = X^{\dagger}(AA)^{\dagger}$$

$$= (AA)^{\dagger}(AA)^{\dagger}$$

$$= (AA)^{\dagger}(AA)^{\dagger}$$

$$= (AA)^{\dagger}(AA)^{\dagger}$$

$$= (AA)^{\dagger}(AA)^{\dagger}$$

Ainsi, X est une matrice symétrique.

2°) Pour tout couple (i, j) d'entiers naturels tels que $1 \le i \le n$ et $1 \le j \le m$, on note $a_{i,j}$ le coefficient de A situé sur la i-ième ligne et dans la j-ième colonne.

Pour tout entier naturel i tel que $1 \le i \le m$, on note x_i le coefficient de X situé sur la i-ième ligne et dans la i-ième colonne.

Donner l'expression de x_i sous la forme d'une somme.

$$x_i = \sum_{k=1}^{k=n} (a_{k,i})^2$$
 (une seule égalité sans justifier)

Compléter, pour i fixé entre 1 et m, l'équivalence suivante :

$$x_i = 0 \iff \forall k \in [1; n] \quad a_{k,i} = 0$$

Attention, l'équivalence est vraie car tous les coefficients de A sont des réels.

 $x_i = 0 \Leftrightarrow$ tous les coefficients de la colonne i de A sont nuls