T experts

Devoir pour le mardi 3 novembre 2020

Écrire très lisiblement, sans	faire de ratures et sans	utiliser d'abréviations.
Utiliser un stylo à plume.		

Note: / 20

Prénom :				Nom:				••
I. On lance deux dés tétraédriques bien é numérotées 1, 2, 3, 4. On note les numéro						bleu,	'autre rouge, dont les faces sont	
On considère l'équation du second degré dé bleu et le coefficient b par le dé rouge		+ az +	- b = 0	(E) d'i	nconnu	e <i>z</i> ∈ ℂ	où le coefficient a est donné par	le
1°) Compléter le tableau suivant donnant supérieures des dés bleu et rouge.	la v	valeur	du disc	crimina	nt ∆ de	(E) e	fonction des numéros des faces	
				Dé b	leu			
			1	2	3	4		
		1						
<u>.</u>		2						
Dérouge		3						
		4						
2°) Sachant que le numéro de la face sup racines complexes conjuguées ? 3°) Sachant que (E) admet deux racines supérieure du dé bleu soit 2 ?		((une seu	ıle répo	onse sar	ıs égali	é)	e
		((une sei	ıle répo	nse sar	ıs égali	é)	

On considère l'ensemble $E = \left\{-10^{-2020}; \frac{1}{\sqrt{1,21}}; \frac{\pi}{3}; \sqrt[3]{5}; -\frac{e}{2}; 2^{-2020}; \frac{1}{3} - \sqrt{2}; \left(-\frac{2}{3}\right)^{-101}; \frac{\sqrt{225}}{9}; \left(\frac{3}{2}\right)^{-21}; \frac{1}{\sqrt{3} - 1}\right\}.$
Écrire le sous-ensemble $\mathrm{E}_{\scriptscriptstyle 1}$ des éléments de E qui sont des nombres irrationnels.
Écrire le sous-ensemble \rmE_2 des éléments de E qui sont des nombres rationnels non décimaux.
III. Soit n un entier relatif de la forme $4k-1$ avec $k \in \mathbb{Z}$. Démontrer que n^2 est de la forme $1+8k'$ avec $k' \in \mathbb{Z}$.

Corrigé du devoir pour le 3-11-2020

I.

		1	2	3	4
	1	- 3	0	5	12
ıge	2	- 7	- 4	1	8
Dé rouge	3	- 11	- 8	- 3	4
	4	- 15	- 12	-7	0

On modélise l'expérience aléatoire par une loi d'équiprobabilité sur l'univers des possibles.

1°)
$$\frac{3}{4}$$

2°)
$$\frac{1}{3}$$

II.

$$E_1 = \left\{ \frac{\pi}{3}; \sqrt[3]{5}; -\frac{e}{2}; \frac{1}{3} - \sqrt{2}; \frac{1}{\sqrt{3} - 1} \right\}$$

Il faut se méfier de dcode qui fournit des résultats faux.

$$E_2 = \left\{ \frac{1}{\sqrt{1,21}}; \frac{\sqrt{225}}{9}; \left(\frac{3}{2}\right)^{-21} \right\}$$

$$\frac{1}{\sqrt{1,21}} = \frac{1}{1,1} = \frac{1}{\frac{11}{10}} = \frac{10}{11}$$

$$\frac{\sqrt{225}}{9} = \frac{15}{9} = \frac{5}{3}$$

$$\left(\frac{3}{2}\right)^{-21} = \left(\frac{2}{3}\right)^{21}$$

III.

$$n^{2} = (4k-1)^{2}$$

$$= 16k^{2} - 8k + 1$$

$$= 8(2k^{2} - k) + 1$$

$$= 8k' + 1 \text{ avec } k' = 2k^{2} - k$$

Comme k est un entier relatif, k' est aussi un entier relatif.

Donc n^2 est bien de la forme 1+8k' avec $k \in \mathbb{Z}$.

On peut même dire que $k' \in \mathbb{N}$.