TS spé

Représentations matricielles de transformations dans le plan et dans l'espace

Mots-clefs:

Expression analytique

Translation

Symétrie centrale

Symétrie axiale (exemple : axe des abscisses et des ordonnées dans un repère orthogonal, droite y = x)

Rotation

Projection

Affinité

Le 23 janvier 2023

Théorème de Napoléon

Tout ce qui est fait dans le plan (sauf pour la rotation) peut être adapté à l'espace en ajoutant une coordonnée.

On note P l'ensemble des points du plan.

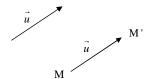
I. Translation

1°) Définition [translation]

Soit \vec{u} un vecteur du plan.

On appelle translation de vecteur \vec{u} l'application qui à tout point M du plan P associe le point M' tel que $\overrightarrow{MM'} = \vec{u}$.

Le point M' est l'image de M par la translation de vecteur \vec{u} (ou le translaté).



2°) Notations

La translation de vecteur \vec{u} est notée $t_{\vec{u}}$.

$$t_{\overline{u}}(M) = M' \text{ ou } t_{\overline{u}} : M \mapsto M' \text{ ou } t_{\overline{u}}$$

$$P \xrightarrow{P} P \xrightarrow{M'} M'$$

Cas particulier :

Lorsque \vec{u} est le vecteur nul, $t_{\vec{u}}$ est la translation de vecteur nul. C'est l'identité du plan notée id_p. L'image de n'importe quel point est confondue avec lui-même.

3°) Expression analytique

On se place dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

Soit \vec{u} un vecteur de coordonnées (a; b).

Soit M un point quelconque du plan et M' son image par $t_{\vec{u}}$ (translation de vecteur \vec{u}).

On note (x; y) les coordonnées de M et (x'; y') les coordonnées de M'.

On cherche à exprimer x' et y' en fonction de x et y.

On a M' = $t_{\bar{u}}(M)$ donc $\overline{MM'} = \vec{u}$ (1).

$$(1) \Leftrightarrow \begin{cases} x' - x = a \\ y' - y = b \end{cases}$$

$$\Leftrightarrow \begin{cases} x' = x + a \\ y' = y + b \end{cases}$$

Ces égalités constituent l'expression analytique de la translation de vecteur \vec{u} .

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$.

II. Homothétie

1°) Définition [homothétie]

Soit O un point du plan et k un réel non nul.

On appelle homothétie de centre O et de rapport k l'application qui à tout point M du plan P associe le point M' tel que $\overrightarrow{OM'} = k\overrightarrow{OM}$.

Le point M' est l'image de M par l'homothétie de centre O et de rapport k.

Figure

2°) Notations

L'homothétie de centre O de rapport
$$k$$
 est notée $h_{(0,k)}$.

$$h_{(0,k)}(\mathbf{M}) = \mathbf{M}' \text{ ou } h_{(0,k)} : \mathbf{M} \mapsto \mathbf{M}' \text{ ou } h_{(0,k)}$$

$$P \xrightarrow{\mathbf{M}} P \xrightarrow{\mathbf{M}'} M'$$

Cas particulier:

Lorsque k = 1, l'homothétie est l'identité du plan notée id_p.

L'image de n'importe quel point est confondue avec lui-même.

$$h_{(0,1)} = \mathrm{id}_P$$

3°) Image du centre

Le point O est invariant (c'est-à-dire confondu avec son image).

4°) Expression analytique

On se place dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

Cas d'une homothétie de centre O

Soit M un point quelconque du plan et M' son image par $h_{(0,k)}$ (homothétie de centre O et de rapport k).

On note (x; y) les coordonnées de M et (x'; y') les coordonnées de M'.

On a M' =
$$h_{(O,k)}(M)$$
 donc $\overrightarrow{OM}' = k\overrightarrow{OM}$ (1).

$$(1) \Leftrightarrow \begin{cases} x' - 0 = k(x - 0) \\ y' - 0 = k(y - 0) \end{cases}$$

$$\Leftrightarrow \begin{cases} x' = kx \\ y' = ky \end{cases}$$

Ces égalités constituent l'expression analytique de l'homothétie de centre O et de rapport k.

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = k \begin{pmatrix} x \\ y \end{pmatrix}$ ou encore $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

Cas d'une homothétie de centre $\Omega(a, b)$

On a M' = $h_{(\Omega,k)}(M)$ donc $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$ (1).

$$(1) \Leftrightarrow \begin{cases} x' - a = k(x - a) \\ y' - b = k(y - b) \end{cases}$$

On peut écrire sous forme matricielle $\begin{pmatrix} x'-a \\ y'-b \end{pmatrix} = k \begin{pmatrix} x-a \\ y-b \end{pmatrix}$ ou encore $\begin{pmatrix} x'-a \\ y'-b \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix}$.

4°) Cas particulier : symétrie centrale

La symétrie centrale de centre O est l'homothétie de centre O et de rapport – 1.

La symétrie centrale de centre O est notée S_0 . On peut écrire $S_0 = h_{(0,-1)}$.

L'expression analytique de la symétrie centrale de centre O est $\begin{cases} x' = -x \\ y' = -y \end{cases}$

III. Rotation

1°) Définition

On se place dans le plan orienté.

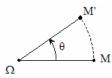
 Ω est un point du plan.

θ est un réel fixé.

La **rotation de centre** Ω **et d'angle** θ est la transformation du plan qui à tout point M du plan P associe le point M' ainsi défini :

 1^{er} cas: $M \neq \Omega$

M' est le point défini par
$$\begin{cases} \Omega M = \Omega M' \\ \left(\overline{\Omega M}, \overline{\Omega M'}\right) = \theta \quad (2\pi) \end{cases}$$



 $2^e \text{ cas}: \mathbf{M} = \mathbf{\Omega}$ Dans ce cas, $\mathbf{M}' = \mathbf{\Omega}$.

 $(\overline{\Omega M}, \overline{\Omega M})$ désigne un angle orienté de vecteurs.

 $(\overline{\Omega M}, \overline{\Omega M'})$ désigne l'angle orienté formé par les vecteurs $\overline{\Omega M}$ et $\overline{\Omega M'}$ dans cet ordre.

On rappelle qu'il s'agit de l'angle orienté formé par les demi-droites $\left[\Omega M\right)$ et $\left[\Omega M'\right)$ dans cet ordre.

On peut définir des angles orientés car le plan est supposé orienté.

Pour les angles orientés de vecteurs, on travaille avec le radian.

La notation (2π) se lit « modulo 2π ».

Les mesures en radians des angles orientés de vecteurs sont toujours définies modulo 2π .

Cas particulier:

Lorsque l'angle θ est un multiple entier de 2π , la rotation est l'identité du plan notée id_P .

L'image de n'importe quel point est confondue avec lui-même.

2°) Notation

La rotation
$$\begin{vmatrix} \operatorname{de centre} \Omega \\ \operatorname{d'angle} \theta \end{vmatrix}$$
 est notée $R_{(\Omega,\theta)}$.

3°) Image du centre

Le point Ω est invariant (c'est-à-dire confondu avec son image).

4°) Expression analytique

On se place dans le plan orienté muni d'un repère orthonormé (O, \vec{i}, \vec{j}) direct c'est-à-dire un repère orthonormé tel que l'angle orienté (\vec{i}, \vec{j}) soit un angle droit direct $[(\vec{i}, \vec{j}) = \frac{\pi}{2} (2\pi)]$.

• Cas d'une rotation de centre $\Omega = 0$

Soit M un point quelconque du plan et M' son image par la rotation de centre O et d'angle θ .

On note (x; y) les coordonnées de M et (x'; y') les coordonnées de M'.

On démontrera plus tard que
$$\begin{cases} x' = (\cos \theta) x - (\sin \theta) y \\ y' = (\sin \theta) x + (\cos \theta) y \end{cases}$$

On retiendra ces formules par cœur.

Ces égalités constituent l'expression analytique de la rotation de centre O et d'angle θ .

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

• Cas d'une rotation de centre $\Omega(a, b)$

On a
$$\begin{pmatrix} x'-a \\ y'-b \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix}$$
.

IV. <u>Symétrie axiale</u>

1°) Définition (rappel)

D est une droite de l'espace.

On appelle symétrie orthogonale d'axe *D* l'application du plan dans lui-même qui à tout point M associe le point M i ainsi défini :

 -1^{er} cas : $M \notin D$

Dans ce cas, M' est le point tel que D soit la médiatrice de [MM'].

- 2^e cas : $M \in D$ Dans ce cas, M' = M.

On parle de symétrie axiale ou orthogonale.

2°) Notation

La symétrie orthogonale d'axe D est notée S_D .

3°) Expression analytique dans des cas particulier

Symétrie axiale par rapport aux axes d'un repère orthogonal

On se place dans le plan muni d'un repère orthogonal (O, \vec{i}, \vec{j}) .

Symétrie orthogonale par rapport à l'axe des abscisses : $\begin{cases} x' = x \\ y' = -y \end{cases}$

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

graphique

Symétrie orthogonale par rapport à l'axe des ordonnées $\begin{cases} x' = -x \\ y' = y \end{cases}$

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

graphique

Symétrie orthogonale par rapport aux bissectrices d'un repère normal

On se place dans le plan muni d'un repère <u>normal</u> (O, \vec{i}, \vec{j}) (vecteurs de base de même norme).

Expression analytique de la symétrie par rapport à la première bissectrice (droite d'équation x = y)

graphique

On peut démontrer que $\begin{cases} x' = y \\ y' = x \end{cases}$ (formules à connaître par cœur).

Dans un repère normal, la symétrie par rapport à la première bissectrice échange les coordonnées.

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

On peut tester ces formules en prenant quelques points sur le graphique.

Expression analytique de la symétrie par rapport à la deuxième bissectrice (droite d'équation y = -x)

graphique

On peut démontrer que $\begin{cases} x' = -y \\ y' = -x \end{cases}$ (formules à connaître par coeur)

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

Symétrie axiale par rapport à une droite parallèle à l'un des axes

$$x = a \begin{cases} x' = 2a - y \\ y' = y \end{cases}$$

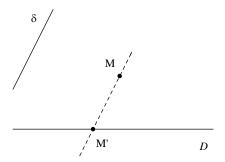
$$y = a \begin{cases} x' = x \\ y' = 2a - y \end{cases}$$

V. Projection sur les axes d'un repère

1°) Définition

Soit D une droite et δ une autre droite non parallèle à D.

On appelle projection sur D parallèlement à δ l'application qui à tout point M du plan associe le point M' d'intersection de D avec la parallèle à δ passant par M.



On dit que M' est le projeté de M sur D parallèlement à δ .

Cas particulier:

Lorsque δ est orthogonale à D, on parle de projection orthogonale.

2°) Points invariants

Les seuls points invariants sont les points de la droite D.

3°) Expression analytique

On se place dans le plan muni d'un repère quelconque (O, \vec{i}, \vec{j}) .

On va s'intéresse aux projections sur chaque axe parallèlement à l'autre axe.

• projection sur (Ox) parallèlement à (Oy) :

On a
$$\begin{cases} x' = x \\ y' = 0 \end{cases}$$
.

On peut écrire $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

• projection sur (Oy) parallèlement à (Ox):

On a
$$\begin{cases} x' = 0 \\ y' = y \end{cases}$$

On peut écrire $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

Projection sur l'axe des abscisses parallèlement à l'axe des ordonnées

graphique

On a
$$\begin{cases} x' = x \\ y' = 0 \end{cases}$$

On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

Projection sur l'axe des ordonnées parallèlement à l'axe des abscisses

graphique

On a
$$\begin{cases} x' = 0 \\ y' = y \end{cases}$$
.

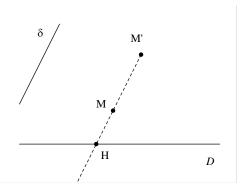
On peut écrire de manière matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

VI. Affinité

1°) Définition

Soit D une droite et delta une autre droite δ non parallèle à D. Soit k un réel non nul.

On appelle affinité d'axe D parallèlement à δ et de rapport k l'application du plan dans lui-même notée $\mathrm{Aff}_{(D,\delta,k)}$ qui à tout point M du plan associe le point M' tel que $\overline{\mathrm{HM}}' = k\,\overline{\mathrm{HM}}'$ où H est le projeté de M sur D parallèlement à δ .



2°) Points invariants

 1^{er} cas : $k \neq 1$

Dans ce cas les seuls points invariants sont les points de la droite D.

 2^{e} cas : k = 1

Dans ce cas, tous les points du plan sont invariants.

3°) Cas particuliers

Lorsque k = -1, on parle de symétrie oblique par rapport à D parallèlement à δ .

Lorsque $D \perp \delta$, on parle d'affinité orthogonale.

4°) Expression analytique dans deux cas particuliers

On se place dans un repère (O, \vec{i}, \vec{j}) .

$$Aff_{(Ox, Oy, k)} : \begin{cases} x' = x \\ y' = ky \end{cases}$$

$$Aff_{(Ox, Oy, k)} : \begin{cases} x' = kx \\ y' = y \end{cases}$$

5°) Exemple important

Dans le plan muni d'un repère orthonormé, l'image d'un cercle O de centre O par une affinité orthogonale d'axe Ox ou Oy est une ellipse.

VII. Simitude directe

VIII. Récapitulatif

Les expressions analytiques étudiées dans les paragraphes précédents sont toutes de la forme $\begin{cases} x' = ax + by + \alpha \\ y' = cx + dy + \beta \end{cases}$ avec $a, b, c, d, \alpha, \beta$ des constantes

On peut écrire sous forme matricielle $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

Ce sont des applications affines du plan dans lui-même.

Généralisation

Application affine

Exemple

Contre-exemple: $\begin{cases} x' = x^2 \\ y' = y^2 \end{cases}$ il ne s'agit pas dune application affine.

Exercices

1 On se place dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$.

Écrire l'expression analytique de l'homothétie de centre O et de rapport $\frac{1}{2}$.

$$h_{\left(0,\frac{1}{2}\right)}$$

On applique directement le cours.

$$\begin{cases} x' = \frac{x}{2} \\ y' = \frac{y}{2} \end{cases}$$

2 On se place dans le plan orienté muni d'un repère orthonormé direct $(0, \vec{i}, \vec{j})$.

- 1°) Écrire l'expression analytique de la rotation de centre O et d'angle $\frac{\pi}{3}$.
- 2°) Écrire l'expression analytique de la rotation de centre O et d'angle $-\frac{\pi}{4}$.

On applique directement le cours $\begin{cases} x' = (\cos \theta) x - (\sin \theta) y \\ y' = (\sin \theta) x + (\cos \theta) y \end{cases}$

1°)
$$R_{\left(0,\frac{\pi}{3}\right)}$$

On a $\cos \frac{\pi}{3} = \frac{1}{2}$ et $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

$$\begin{cases} x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y \\ y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y \end{cases}$$

2°)
$$R_{0,-\frac{\pi}{4}}$$

On a $\cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ et $\sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

$$\begin{cases} x' = \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y \\ y' = -\frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y \end{cases}$$

- 3 On se place dans le plan orienté muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .
- 1°) Écrire l'expression analytique du quart de tour direct de centre O.
- 2°) Écrire l'expression analytique du quart de tour indirect de centre O.
- 1°) Le quart de tour direct de centre O est la rotation de centre O et d'angle $\frac{\pi}{2}$. On le note $R_{\left(0,\frac{\pi}{2}\right)}$.

On a
$$\cos \frac{\pi}{2} = 0$$
 et $\sin \frac{\pi}{2} = 1$.

$$\begin{cases} x' = -y \\ y' = x \end{cases}$$

Ces formules se vérifient graphiquement.

2°) Le quart de tour indirect de centre O est la rotation de centre O et d'angle $-\frac{\pi}{2}$. On le note $R_{\left(0,-\frac{\pi}{2}\right)}$.

On a
$$\cos\left(-\frac{\pi}{2}\right) = 0$$
 et $\sin\left(-\frac{\pi}{2}\right) = -1$.

$$\begin{cases} x' = y \\ y' = -x \end{cases}$$

Ces formules se vérifient graphiquement.

4 On se place dans le plan orienté muni d'un repère orthonormé direct $(0, \vec{i}, \vec{j})$.

Déterminer les coordonnées de A', image de A $\left(1;\sqrt{3}\right)$ par la rotation de centre O et d'angle $\frac{\pi}{3}$. On peut vérifier sur un graphique.

$$A' = R_{\left(0, \frac{\pi}{3}\right)}(A)$$

On applique les formules donnant l'expression analytique de la rotation de centre O et d'angle $\frac{\pi}{3}$.

On a
$$\cos \frac{\pi}{3} = \frac{1}{2}$$
 et $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

$$\begin{cases} x_{A'} = \frac{1}{2} x_A - \frac{\sqrt{3}}{2} y_A \\ y_{A'} = \frac{\sqrt{3}}{2} x_A + \frac{1}{2} y_A \end{cases}$$

$$\begin{cases} x_{A'} = \frac{1}{2} \times 1 - \frac{\sqrt{3}}{2} \times \sqrt{3} = -1 \\ y_{A'} = \frac{\sqrt{3}}{2} \times 1 + \frac{1}{2} \times \sqrt{3} = \sqrt{3} \end{cases}$$

$$A'\left(-1;\sqrt{3}\right)$$

 $\boxed{5}$ On se place dans le plan orienté muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

Déterminer les coordonnées de A', image de A(3;7) par la translation de vecteur $\vec{u}(2;-3)$.

 $t_{\vec{u}}$

On applique les formules donnant l'expression analytique d'une translation.

$$\begin{cases} x_{A'} = x_A + x_{\bar{u}} = 3 + 2 = 5 \\ y_{A'} = y_A + y_{\bar{u}} = 7 - 3 = 6 \end{cases}$$

A'(5;4)

6 On se place dans le plan orienté muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

On considère le point A(3;1).

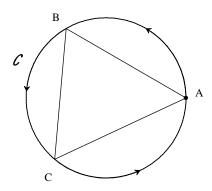
On note:

B₁ le point tel que le triangle OA B₁ soit équilatéral direct ;

B₂ le point tel que le triangle OAB₂ soit équilatéral indirect.

Déterminer les coordonnées des points B₁ et B₂.

Dans le plan orienté, on dit u'un triangle ABC, les points A, B, C étant nommés dans cet ordre si l'on rencontre les points A, B, C dans cet ordre lorsque l'on tourne dans le sens direct sur le cercle circonscrit au triangle.



Ancienne version:

Déterminer les coordonnées des points B₁ et B₂ tels que OAB₁ et OAB₂ soient équilatéraux.

Il faut faire un graphique.

On sait que tous les angles d'un triangle équilatéral ont pour mesure 60° soit $\frac{\pi}{3}$ rad.

On a
$$B_1 = R_{(0,\frac{\pi}{3})}(A)$$
 et $B_2 = R_{(0,-\frac{\pi}{3})}(A)$.

$$\begin{cases} x' = (\cos \theta)x - (\sin \theta)y \\ y' = (\sin \theta)x + (\cos \theta)y \end{cases}$$

$$\begin{cases} x_{\text{B}_{1}} = \frac{1}{2}x_{\text{A}} - \frac{\sqrt{3}}{2}y_{\text{A}} \\ y_{\text{B}_{1}} = \frac{\sqrt{3}}{2}x_{\text{A}} + \frac{1}{2}y_{\text{A}} \end{cases}$$

$$\begin{cases} x_{\text{B}_{2}} = \frac{1}{2}x_{\text{A}} + \frac{\sqrt{3}}{2}y_{\text{A}} \\ y_{\text{B}_{2}} = -\frac{\sqrt{3}}{2}x_{\text{A}} + \frac{1}{2}y_{\text{A}} \end{cases}$$

$$\begin{cases} x_{\text{B}_{1}} = \frac{1}{2} \times 3 - \frac{\sqrt{3}}{2} \times 1 \\ y_{\text{B}_{1}} = \frac{\sqrt{3}}{2} \times 3 + \frac{1}{2} \times 1 \end{cases}$$

$$\begin{cases} x_{\text{B}_{2}} = \frac{1}{2} \times 3 + \frac{\sqrt{3}}{2} \times 1 \\ y_{\text{B}_{2}} = -\frac{\sqrt{3}}{2} \times 3 + \frac{1}{2} \times 1 \end{cases}$$

$$\begin{cases} x_{\text{B}_{2}} = \frac{3 - \sqrt{3}}{2} \\ y_{\text{B}_{1}} = \frac{1 + 3\sqrt{3}}{2} \end{cases}$$

$$\begin{cases} x_{\text{B}_{2}} = \frac{3 + \sqrt{3}}{2} \\ y_{\text{B}_{2}} = \frac{1 - 3\sqrt{3}}{2} \end{cases}$$

7 On se place dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

On note \mathcal{C} la courbe d'équation $y = x^2$.

Déterminer une équation de \mathcal{C} , image de \mathcal{C} par l'homothétie de centre O et de rapport 2.

Soit M un point quelconque du plan et M' son image par $h_{(0,2)}$.

On note (x; y) les coordonnées de M et (x'; y') les coordonnées de M'.

On a
$$\begin{cases} x' = 2x \\ y' = 2y \end{cases}$$

$$M \in \mathcal{C} \Leftrightarrow y = x^{2}$$

$$\Leftrightarrow \frac{y'}{2} = \left(\frac{x'}{2}\right)^{2}$$

$$\Leftrightarrow \frac{y'}{2} = \frac{(x')^{2}}{4}$$

$$\Leftrightarrow y' = \frac{(x')^{2}}{2}$$

C' a donc pour équation $y = \frac{x^2}{2}$ ou encore $2y = x^2$.

 $\boxed{\mathbf{7}}$ On se place dans le plan muni d'un repère orthonormé $\left(\mathbf{O},\vec{i},\vec{j}\right)$.

Existe-t-il un triangle équilatéral ABC tel que les coordonnées des points A, B, C soient des entiers relatifs ?

On raisonne par l'absurde.

Le 6-2-2023

Représentation matricielle de transformations du plan

$t_{\vec{u}}$	$h_{(O,k)}$	rotation	symétrie axiale	projection	affinité	
$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$	$\begin{cases} x' = kx \\ y' = ky \end{cases}$ $\begin{cases} x' - a = k(x - a) \\ y' - b = k(y - b) \end{cases}$		repère orthogonal Symétrie par rapport à l'axe des abscisses Symétrie par rapport à l'axe des ordonnées Symétrie par rapport à la droite d'équation $y = x$			
	Cas particulier symétrie centrale					