TS1 spécialité

Devoir pour le lundi 4 mai 2020

I. On considère la fonction f définie sur \mathbb{Z} par $f(n) = \frac{n}{3}$ si n est divisible par 3 et f(n) = 3 - n si n n'est pas divisible par 3.

On notera que f est une fonction définie par deux expressions différentes selon que n est divisible par 3 et l'on observera que f est à valeurs dans \mathbb{Z} .

Le but du devoir est de déterminer l'ensemble E des entiers relatifs n vérifiant la condition $f(n) \equiv 1 \pmod{5}$.

- 1°) Déterminer tous les entiers naturels de E inférieurs ou égaux à 50. On pourra éventuellement utiliser un programme Python.
- 2°) Déterminer tous les éléments de *E* qui sont divisibles par 3.
- 3°) L'objectif de cette question est de déterminer tous les éléments de *E* qui ne sont pas divisibles par 3.

Soit *n* un entier relatif non divisible par 3. On a alors $n \equiv 1 \pmod{3}$ ou $n \equiv 2 \pmod{3}$.

a) On se place dans le cas où $n \equiv 1 \pmod{3}$.

On a alors l'équivalence $n \in E \Leftrightarrow (I) \begin{cases} 3 - n \equiv 1 \pmod{5} \\ n \equiv 1 \pmod{3} \end{cases}$.

- Démontrer que (I) \Leftrightarrow $\begin{cases} n \equiv 7 \pmod{5} \\ n \equiv 7 \pmod{3} \end{cases}$ puis achever la démarche (toujours en équivalences) pour déterminer les entiers relatifs n solutions de (I).
- Vérifier la résolution du système (I) en utilisant l'outil de résolution des équations modulaires du site « dcode » et (https://www.dcode.fr/solveur-equation-modulaire).
- b) Refaire le même travail dans le cas où $n \equiv 2 \pmod{3}$.
- 4°) Formuler une conclusion claire sur l'ensemble E.
- II. Le plan est muni d'un repère (O, \vec{i}, \vec{j}) .

Déterminer l'ensemble E des points M du plan de coordonnées (x; y) tels que la matrice $A = \begin{pmatrix} e^x & 1 \\ 2 & e^y \end{pmatrix}$ ne soit pas inversible.

Corrigé du devoir pour le 4-5-2020

I.

1°) On réalise un programme Python.

Les entiers naturels de *E* inférieurs ou égaux à 50 sont 2, 3, 7, 17, 18, 22, 32, 33, 37, 47, 48.

2°) On cherche à déterminer tous les éléments de *E* qui sont divisibles par 3.

Soit *n* un entier divisible par 3.

$$n \in E \iff f(n) \equiv 1 \pmod{.5}$$

 $\Leftrightarrow \frac{n}{3} \equiv 1 \pmod{.5}$
 $\Leftrightarrow n \equiv 3 \pmod{.15}$

Les éléments de E qui sont divisibles par 3 sont les entiers congrus à 3 modulo 15.

3°)

a)
$$1^{er} cas : n \equiv 1 \pmod{3}$$

On a
$$n \in E \Leftrightarrow (I)$$

$$\begin{cases} 3 - n \equiv 1 \pmod{5} \\ n \equiv 1 \pmod{3} \end{cases}$$
.

(I)
$$\Leftrightarrow$$

$$\begin{cases} n \equiv 2 \pmod{5} \\ n \equiv 1 \pmod{3} \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} n \equiv 7 \pmod{5} \\ n \equiv 7 \pmod{3} \end{cases}$$
 car $7 \equiv 2 \pmod{5}$

$$\Leftrightarrow$$

$$\begin{cases} 5 \mid n - 7 \\ 3 \mid n - 7 \end{cases}$$

 $\Leftrightarrow 3 \times 5 \mid n-7$ car 3 et 5 sont premiers entre eux (propriété du cours)

$$\Leftrightarrow 15 \mid n-7$$

$$\Leftrightarrow n-7 \equiv 0 \pmod{15}$$

$$\Leftrightarrow n \equiv 7 \pmod{15}$$

Les solutions de (I) sont les entiers congrus à 7 modulo 15.

On vérifie le site « dcode » (partie « résolution des équations modulaires ».

b)
$$2^{e}$$
 cas : $n \equiv 2 \pmod{3}$.

On a
$$n \in E \Leftrightarrow \text{(II)} \begin{cases} 3 - n \equiv 1 \pmod{5} \\ n \equiv 2 \pmod{3} \end{cases}$$
.

(II)
$$\Leftrightarrow$$

$$\begin{cases} n \equiv 2 \pmod{5} \\ n \equiv 2 \pmod{3} \end{cases}$$

$$\Leftrightarrow \begin{cases} 5 \mid n-2 \\ 3 \mid n-2 \end{cases}$$

 $\Leftrightarrow 3 \times 5 \mid n-2$ car 3 et 5 sont premiers entre eux (propriété du cours)

$$\Leftrightarrow 15 \mid n-2$$

$$\Leftrightarrow n-2 \equiv 0 \pmod{15}$$

$$\Leftrightarrow n \equiv 2 \pmod{15}$$

Les solutions de (II) sont les entiers congrus à 2 modulo 15.

On vérifie le site « dcode » (partie « résolution des équations modulaires ».

4°) E est l'ensemble des entiers relatifs congrus à 2, 3 ou 7 modulo 15.

On vérifie la cohérence avec les résultats de la question 1°) obtenus avec le programme Python.

II. Le plan est muni d'un repère (O, \vec{i}, \vec{j}) .

Déterminer l'ensemble E des points M du plan de coordonnées (x; y) tels que la matrice $A = \begin{pmatrix} e^x & 1 \\ 2 & e^y \end{pmatrix}$ ne soit pas inversible.

Soit M un point quelconque du plan de coordonnées (x; y).

$$M \in E \Leftrightarrow \det A = 0$$

$$\Leftrightarrow e^x \times e^y - 2 \times 1 = 0$$

$$\Leftrightarrow e^{x+y} = 2$$

$$\Leftrightarrow x + y = \ln 2$$

L'ensemble E est la droite d'équation $x + y = \ln 2$.