## 1<sup>ère</sup> 6 spécialité

# Contrôle du jeudi 19 décembre 2019 (2 heures)



| Numéro :             | Prénom et nom :                                                                                             | Note: / 20 |
|----------------------|-------------------------------------------------------------------------------------------------------------|------------|
| I. (2 points : 1°) 1 | point; 2°) 1 point)                                                                                         |            |
| On considère le pol  | lynôme $P(x) = (x+3)(2x-1) - m(x+1)^2$ où <i>m</i> est un réel.                                             |            |
|                      | stion, on prend $m = 1$ . puis mettre $P(x)$ sous forme canonique.                                          |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      | naintenant que $m$ est un réel quelconque. eur de $m$ telle $P(x)$ ne soit pas un polynôme du second degré? |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |
|                      |                                                                                                             |            |

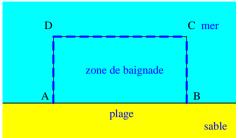
### **II.** (2 points : 1°) 1 point ; 2°) 1 point)

Les moniteurs d'un centre aéré disposent d'une ligne de bouchons de 60 m pour créer une zone rectangulaire de baignade surveillée au bord de la mer.

Le côté [AB] est le bord de la plage supposé droit et les trois autres côtés correspondent à la ligne flottante.

Comme le centre affiche complet cette année, il va y avoir du monde dans l'eau!

Ils souhaitent donc positionner leur ligne de façon à obtenir une zone de baignade de surface maximale.



|                                                                       |                                          | plage                                   | sable         |                             |
|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------|---------------|-----------------------------|
| 1°) On note x la longueur en mèt                                      |                                          |                                         |               |                             |
| Exprimer en fonction de $x$ l'aire                                    | ℳ de la zone de baig                     | nade terrain en m <sup>2</sup>          | (on donner    | a une expression développée |
|                                                                       |                                          |                                         |               |                             |
|                                                                       |                                          |                                         |               |                             |
|                                                                       |                                          |                                         |               |                             |
|                                                                       |                                          |                                         |               |                             |
|                                                                       |                                          |                                         |               |                             |
| 2°) Former le tableau de variatio                                     |                                          | $\rightarrow 60x - 2x^2 \text{ sur l'}$ | intervalle [  | 0;30].                      |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul. x l'aire A est maxim    | ale et donner la val                    | leur de l'air | e maximale.                 |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul.<br>x l'aire ≪ est maxim | ale et donner la val                    | eur de l'air  | e maximale.                 |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul.  x l'aire A est maxim   | ale et donner la val                    | eur de l'air  | e maximale.                 |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul.  x l'aire   est maxim   | ale et donner la val                    | eur de l'air  | e maximale.                 |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul.  x l'aire    est maxim  | ale et donner la val                    | eur de l'air  | e maximale.                 |
| Justifier brièvement par une phra<br>En déduire pour quelle valeur de | se et un calcul.  x l'aire   est maxim   | ale et donner la val                    | eur de l'air  | e maximale.                 |

| III. (5 points : 1°) 1 point ; 2°) 2 points ; 3°) 1 point ; 4°) 1 point)                                                                                                                      | 4°) Vérifier que pour tout réel $x$ on a $f(x) = (x-1)(x^2-2x-1)$ . En déduire les abscisses des points d'intersection de $\mathscr{C}$ avec l'axe des abscisses. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On considère la fonction $f: x \mapsto x^3 - 3x^2 + x + 1$ définie sur $\mathbb{R}$ et on note $\mathscr{C}$ sa courbe représentative dans le plan muni d'un repère $(O, \vec{i}, \vec{j})$ . |                                                                                                                                                                   |
| 1°) Calculer $f'(x)$ .                                                                                                                                                                        |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
| 2°) Compléter sans explication la phrase :                                                                                                                                                    |                                                                                                                                                                   |
| f' s'annule en                                                                                                                                                                                |                                                                                                                                                                   |
| Dans un même tableau, étudier le signe de $f'(x)$ et les variations de $f$ ; écrire les extremums sous la forme la plus simple possible.                                                      |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
| $3^{\circ}$ ) Déterminer une équation des tangentes à $\mathscr C$ aux points A et B d'abscisses respectives 0 et 1.                                                                          |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |
|                                                                                                                                                                                               |                                                                                                                                                                   |

| IV. (3 points : 1°) 1 point ; 2°) 1 point ; 3°) 1 point)                                                                                                                              | VI. (1 point)                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| On considère la fonction $f: x \mapsto \sqrt{x}$ définie sur $[0; +\infty[$ et on note $\mathscr{C}$ sa courbe représentative dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$ . | Donner deux réels négatifs dont le cosinus est égal au sinus.                                                                                                                                                                                                   |  |  |  |
| 1°) Rappeler le domaine de dérivabilité de $f$ et l'expression de $f'(x)$ .                                                                                                           |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       | VII. (4 points : 1°) 2 points ; 2°) 2 points)                                                                                                                                                                                                                   |  |  |  |
| $2^\circ$ ) Calculer le coefficient directeur de la tangente à $\mathscr C$ au point A d'abscisse 9.                                                                                  | On considère l'équation $x^2 \sin \alpha - x \cos \alpha - \frac{\sin \alpha}{4} = 0$ (E) d'inconnue $x \in \mathbb{R}$ où $\alpha$ est un paramètre.                                                                                                           |  |  |  |
|                                                                                                                                                                                       | $1^\circ)$ Dans cette question, on envisage deux valeurs particulières de $\alpha.$                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                       | Quelles sont les solutions de (E) lorsque $\alpha = \frac{5\pi}{2}$ ?                                                                                                                                                                                           |  |  |  |
| 3°) Quel est l'abscisse du point B de $\mathscr C$ en lequel la tangente a pour coefficient directeur 3 ?                                                                             |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       | π                                                                                                                                                                                                                                                               |  |  |  |
| V. (3 points : 1°) 2 points ; 2°) 1 point)                                                                                                                                            | Quelles sont les solutions de (E) lorsque $\alpha = \frac{\pi}{4}$ ?                                                                                                                                                                                            |  |  |  |
| Dans le plan muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$ , on donne les points $E(\sqrt{3}-1; \sqrt{3}+1)$ , $F(1; 0)$ et $G(0; 2)$ .                                         |                                                                                                                                                                                                                                                                 |  |  |  |
| $1^{\circ}$ ) Écrire une équation du cercle $\mathscr C$ de centre O passant par le point E et une équation de la droite (FG).                                                        | $2^{\circ}$ ) On revient au cas où α est un réel quelconque qui n'est pas de la forme $k\pi$ avec $k$ entier relatif. Expliquer pourquoi (E) est une équation du second degré.                                                                                  |  |  |  |
|                                                                                                                                                                                       | Calculer ensuite le discriminant $\Delta$ de $(E)$ et vérifier que la valeur de $\Delta$ est indépendante de $\alpha$ .  Justifier que $(E)$ admet toujours deux racines distinctes dans $\mathbb{R}$ dont on donnera les expressions en fonction de $\alpha$ . |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
| $2^{\circ}$ ) Déterminer les abscisses des points d'intersection de la droite (FG) et du cercle $\mathscr{C}$ .                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |  |  |  |

## Corrigé du contrôle du 19-12-2019

I.

On considère le polynôme  $P(x) = (x+3)(2x-1) - m(x+1)^2$  où m est un réel.

1°) Dans cette question, on prend m = 1.

Développer P(x) puis mettre P(x) sous forme canonique.

Pour 
$$m=1$$
,  $P(x)=(x+3)(2x-1)-(x+1)^2$ .

$$\forall x \in \mathbb{R} \quad P(x) = 2x^2 - x + 6x - 3 - (x^2 + 2x + 1)$$
$$= 2x^2 + 5x - 3 - x^2 - 2x - 1$$
$$= x^2 + 3x - 4$$

Pour déterminer la forme canonique de P(x), on reprend la forme développée réduite.

$$\forall x \in \mathbb{R} \quad P(x) = \left(x + \frac{3}{2}\right)^2 - \frac{9}{4} - 4$$
$$= \left(x + \frac{3}{2}\right)^2 - \frac{25}{4}$$

 $2^{\circ}$ ) On considère maintenant que m est un réel quelconque.

Existe-t-il une valeur de m telle P(x) ne soit pas un polynôme du second degré?

$$\forall x \in \mathbb{R} \quad P(x) = 2x^2 + 5x - 3 - m(x^2 + 2x + 1)$$
$$= (2 - m)x^2 + (5 - 2m)x - 3 - m$$

Le coefficient de  $x^2$  est nul lorsque m = 2 et uniquement dans ce cas.

Pour m = 2, P(x) n'est pas un polynôme du second degré.

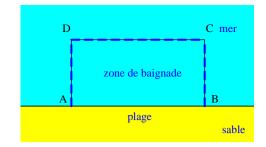
П.

Les moniteurs d'un centre aéré disposent d'une ligne de bouchons de 60 m pour créer une zone rectangulaire de baignade surveillée au bord de la mer.

Le côté [AB] est le bord de la plage supposé droit et les trois autres côtés correspondent à la ligne flottante.

Comme le centre affiche complet cette année, il va y avoir du monde dans l'eau!

Ils souhaitent donc positionner leur ligne de façon à obtenir une zone de baignade de surface maximale.



1°) On note x la longueur en mètres des côtés perpendiculaires à la plage ( $0 \le x \le 30$ ).

Exprimer en fonction de x l'aire A de la zone de baignade terrain en m² (on donnera une expression développée).

On a 
$$\mathscr{A} = AB \times AD$$
.

On doit calculer AB en fonction de x.

La ligne de bouée est disposée uniquement sur trois côtés du rectangle ABCD comme le montre le schéma.

On a donc AD + DC + CB = 60 d'où DC = 60 - 2x.

On a donc  $\mathscr{A} = x(60-2x)$  soit  $\mathscr{A} = 60x-2x^2$ .

2°) Former le tableau de variations de la fonction  $f: x \mapsto 60x - 2x^2$  sur l'intervalle [0; 30].

Justifier brièvement par une phrase et un calcul.

En déduire pour quelle valeur de x l'aire  $\mathcal{A}$  est maximale et donner la valeur de l'aire maximale.

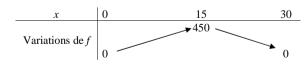
f admet une expression de la forme  $ax^2 + bx + c$  avec les coefficients a = -2, b = 60, c = 0.

Comme  $a \neq 0$ , f appartient à la famille des fonctions polynômes du second degré.

On utilise la propriété des variations d'une fonction polynôme du second degré. On peut aussi utiliser la dérivée.

On calcule 
$$-\frac{b}{2a} = -\frac{60}{2 \times (-2)} = 15$$
.

Comme a est strictement négatif, on obtient le tableau de variations suivant :



$$f(15) = 60 \times 15 - 2 \times 15^2 = 450$$

f est strictement croissante sur l'intervalle [0;15] et strictement décroissante sur l'intervalle [15;30].

On constate que f admet un maximum global sur l'intervalle [0;30] égal à 450 et atteint pour x=15.

Comme  $f(x) = \mathcal{A}$ , l'aire  $\mathcal{A}$  est maximale pour x = 15 et vaut, dans ce cas, 450 m<sup>2</sup>.

On vérifie les variations et la valeur du maximum grâce à la calculatrice en traçant la courbe représentative de f avec une fenêtre adaptée.

#### III.

On considère la fonction  $f: x \mapsto x^3 - 3x^2 + x + 1$  définie sur  $\mathbb{R}$  et on note  $\mathscr{C}$  sa courbe représentative dans le plan muni d'un repère  $(O, \vec{i}, \vec{j})$ .

1°) Calculer f'(x).

$$\forall x \in \mathbb{R}$$
  $f'(x) = 3x^2 - 6x + 1$ 

2°) Compléter sans explication la phrase :

f' s'annule en 
$$\frac{3-\sqrt{6}}{3}$$
 et  $\frac{3+\sqrt{6}}{3}$  [écrire la (ou les) valeur(s) de x, sans égalités].

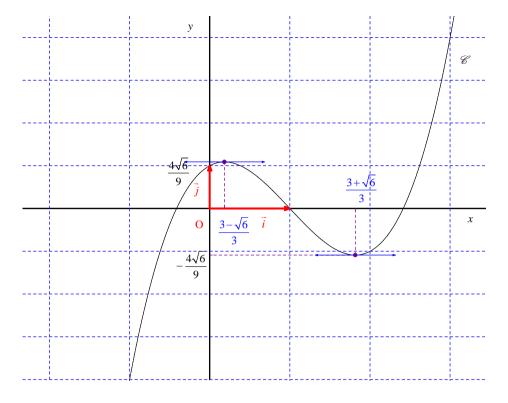
On utilise le discriminant réduit et on vérifie le résultat grâce à la calculatrice.

Dans un même tableau, étudier le signe de f'(x) et les variations de f; écrire les extremums sous la forme la plus simple possible.

| x                | _ ∞ | $\frac{3-\sqrt{6}}{3}$ |   | $\frac{3+\sqrt{6}}{3}$ |   | + ∞ |
|------------------|-----|------------------------|---|------------------------|---|-----|
| Signe de $f'(x)$ | +   | 0                      | - | 0                      | + |     |
| Variations de f  |     | $\frac{4\sqrt{6}}{9}$  |   | $-\frac{4\sqrt{6}}{9}$ |   |     |

On utilise la règle du signe d'un polynôme du second degré.

On calcule les extremums locaux grâce à la calculatrice.



 $3^{\circ}$ ) Déterminer une équation des tangentes à  $\mathscr{C}$  aux points A et B d'abscisses respectives 0 et 1.

La tangente à  $\mathscr{C}$  en A a pour équation y = f'(0)(x-0) + f(0) soit y = x+1.

En effet, f(0) = 1 et f'(0) = 1.

La tangente à  $\mathscr{C}$  en B a pour équation y = f'(1)(x-1) + f(1) soit y = 2 - 2x.

En effet, f(1) = 0 et f'(1) = -2.

On vérifie les deux résultats grâce à la calculatrice en utilisant la commande de tracé d'une tangente.

4°) Vérifier que pour tout réel x on a  $f(x) = (x-1)(x^2-2x-1)$ . En déduire les abscisses des points d'intersection de  $\mathscr{C}$  avec l'axe des abscisses.

On pose 
$$g(x) = (x-1)(x^2-2x-1)$$
.

$$\forall x \in \mathbb{R}$$
  $g(x) = x^3 - 2x^2 - x - x^2 + 2x + 1$   
=  $x^3 - 3x^2 + x + 1$   
=  $f(x)$ 

Les abscisses des points d'intersection de  $\mathscr{C}$  avec l'axe des abscisses sont les solutions de l'équation f(x) = 0 qui s'écrit  $(x-1)(x^2-2x-1)=0$  (1).

(1) équivaut à x = 1 ou  $x^2 - 2x - 1 = 0$ .

Considérons le polynôme  $x^2 - 2x - 1$ .

On calcule son discriminant réduit  $\Delta' = (-1)^2 - 1 \times (-1) = 1 + 1 = 2$ .

Comme  $\Delta' > 0$ , le polynôme admet deux racines distinctes dans  $\mathbb{R}$ :  $x_1 = 1 + \sqrt{2}$  et  $x_2 = 1 - \sqrt{2}$ .

 $\mathscr{C}$  coupe donc l'axe des abscisses aux points d'abscisses 1,  $1+\sqrt{2}$  et  $1-\sqrt{2}$ .

On vérifie avec la calculatrice en résolvant directement l'équation  $x^3 - 3x^2 + x + 1 = 0$  (sans utiliser la calculatrice) grâce à la commande de la calculatrice permettant de résoudre des équations polynomiales.

#### IV.

On considère la fonction  $f: x \mapsto \sqrt{x}$  définie sur  $[0; +\infty[$  et on note  $\mathscr{C}$  sa courbe représentative dans le plan muni d'un repère  $(O, \vec{i}, \vec{j})$ .

1°) Rappeler le domaine de dérivabilité de f et l'expression de f'(x).

Le domaine de dérivabilité de f est  $]0; +\infty[$  ou  $\mathbb{R}^*_+$  (la fonction « racine carrée » n'est pas dérivable en 0).

$$\forall x \in \mathbb{R}_+^* \quad f'(x) = \frac{1}{2\sqrt{x}}$$

2°) Calculer le coefficient directeur de la tangente à  $\mathscr C$  au point A d'abscisse 9.

$$f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6}$$

On vérifie le résultat grâce à la calculatrice.

3°) Quel est l'abscisse du point B de & en lequel la tangente a pour coefficient directeur 3?

L'abscisse du point cherché est la solution de l'équation f'(x) = 3 soit  $\frac{1}{2\sqrt{x}} = 3$  (1).

(1) est successivement équivalente aux lignes suivantes :

$$1 = 6\sqrt{x}$$

$$\sqrt{x} = \frac{1}{6}$$

$$x = \frac{1}{26}$$

V.

Dans le plan muni d'un repère orthonormé  $(0, \vec{i}, \vec{j})$ , on donne les points  $E(\sqrt{3}-1; \sqrt{3}+1)$ , F(1; 0) et G(0; 2).

1°) Écrire une équation du cercle & de centre O passant par le point E et une équation de la droite (FG).

$$x^2 + y^2 = 8 y = 2 - 2x$$

• Recherche d'une équation de  $\mathscr{C}$ :

On calcule le rayon de  $\mathscr C$  au carré. On calcule donc  $OE^2 = \left(\sqrt{3} - 1\right)^2 + \left(\sqrt{3} + 1\right)^2 = 8$ .  $\mathscr C$  a donc pour équation  $x^2 + y^2 = 8$ .

• Recherche d'une équation de (FG) :

1ère méthode: On cherche une équation réduite en utilisant le coefficient directeur.

On calcule le coefficient directeur de la droite (FG) :  $m = \frac{y_G - y_F}{x_C - x_C} = \frac{2 - 0}{0 - 1} = -2$ .

On applique ensuite la formule donnant une équation d'une droite passant par un point de coefficient directeur donné:  $y = m(x - x_F) + y_F$  soit y = -2(x - 0) + 2 ou plus simplement y = 2 - 2x.

2<sup>e</sup> méthode : On cherche une équation cartésienne en utilisant le critère analytique de colinéarité.

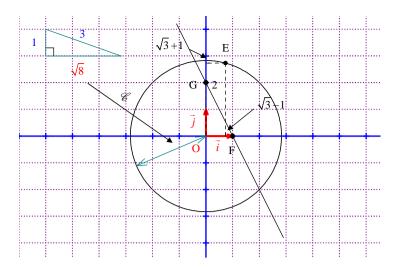
Soit M est un point quelconque du plan de coordonnées (x; y).

M  $\in$  (FG) si et seulement si  $\overline{FM} \begin{vmatrix} x-1 \\ y \end{vmatrix}$  et  $\overline{FG} \begin{vmatrix} -1 \\ 2 \end{vmatrix}$  sont colinéaires si et seulement si  $\begin{vmatrix} x-1 & -1 \\ y & 2 \end{vmatrix} = 0$  (on traduit la colinéarité à l'aide du déterminant) si et seulement si  $2(x-1)-y\times(-1)=0$  (on développe le déterminant ; on utilise des parenthèses) si et seulement si 2x-2+y=0 (on poursuit le développement) si et seulement si 2x+y-2=0 (on réduit et on ordonne)

L'égalité 2x + y - 2 = 0 est une équation cartésienne de (FG).

On peut faire un graphique pour contrôler les résultats.

Pour construire un segment de longueur  $\sqrt{8}$ , on peut observer que  $8 = 3^2 - 1^2$ . On construit donc un triangle rectangle dont l'hypoténuse est égale à 3 et un côté de l'angle droit a pour longueur 1.



2°) Déterminer les abscisses des points d'intersection de la droite (FG) et du cercle &.

1ère méthode :

Les abscisses des points d'intersection de  $\mathscr{C}$  et (FG) sont les solutions de l'équation  $x^2 + (2-2x)^2 = 8$  (1).

(1) est successivement équivalente aux lignes suivantes :

$$x^2 + 4 - 8x + 4x^2 = 8$$

$$5x^2 - 8x - 4 = 0$$

x = 2 (racine évidente) ou  $x = -\frac{2}{5}$  [on peut aussi utiliser le discriminant réduit  $\Delta' = 16 + 20 = 36$ ]

Les abscisses des points d'intersection de  $\mathscr{C}$  et (FG) sont 2 et  $-\frac{2}{5}$ .

 $2^e$  méthode :

Les coordonnées des points d'intersection de  $\mathscr{C}$  et (FG) sont les solutions du système  $\begin{cases} x^2 + y^2 = 8 \\ y = 2 - 2x \end{cases}$ 

Il s'agit d'un système de deux équations. La deuxième est une équation linéaire mais pas la première.

On résout donc le système par substitution.

Le système est équivalent au système  $\begin{cases} x^2 + (2 - 2x)^2 = 8 & (1) \\ y = 2 - 2x \end{cases}$ 

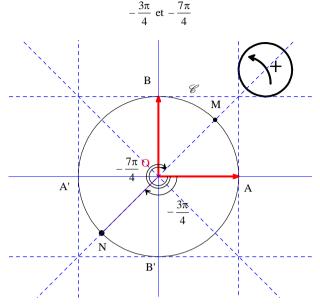
On retrouve l'équation (1) de la 1ère méthode.

On finit pareil.

On vérifie les résultats sur le graphique.

#### VI.

Donner deux réels négatifs dont le cosinus est égal au sinus.



Les images des réels dont le cosinus est égal au sinus sont les points M et N. On cherche donc des réels négatifs associés à ces points comme sur le cercle trigonométrique tracés ci-dessous (mesures en radians des angles orientés formés par les demi-droites [OA) et [OM) dans cet ordre et [OA) et [ON) (voir codage marqué).

On connaît de manière évidente un réel dont le sinus est égal au cosinus :  $\frac{\pi}{4}$ . Mais ce nombre n'est pas négatif. Il faut retrancher  $2\pi$ ,  $4\pi$  etc. pour trouver des nombres négatifs.

#### VII.

On considère l'équation  $x^2 \sin \alpha - x \cos \alpha - \frac{\sin \alpha}{4} = 0$  (E) d'inconnue  $x \in \mathbb{R}$  où  $\alpha$  est un paramètre.

 $1^{\circ}$ ) Dans cette question, on envisage deux valeurs particulières de  $\alpha$ .

Quelles sont les solutions de (E) lorsque  $\alpha = \frac{5\pi}{2}$ ?

$$\frac{1}{2}$$
 et  $-\frac{1}{2}$ 

Pour  $\alpha = \frac{5\pi}{2}$ ,  $\cos \alpha = 0$  et  $\sin \alpha = 1$ . (E) s'écrit donc  $x^2 - \frac{1}{4} = 0$ .

Il s'agit d'une équation du second degré, incomplète en x. On n'utilise donc pas le discriminant.

(E) est successivement équivalente à :

$$x^2 = \frac{1}{4}$$

$$x = \frac{1}{2}$$
 ou  $x = -\frac{1}{2}$ 

Quelles sont les solutions de (E) lorsque  $\alpha = \frac{\pi}{4}$ ?

Pour 
$$\alpha = \frac{\pi}{4}$$
,  $\cos \alpha = \sin \alpha = \frac{1}{\sqrt{2}}$ . (E) s'écrit donc  $x^2 \times \frac{1}{\sqrt{2}} - x \times \frac{1}{\sqrt{2}} - \frac{1}{4\sqrt{2}} = 0$ .

(E) est successivement équivalente à :

$$x^2 - x - \frac{1}{4} = 0$$
 [on a multiplié les deux membres par  $\sqrt{2}$ ]

$$x = \frac{1+\sqrt{2}}{2}$$
 ou  $x = \frac{1-\sqrt{2}}{2}$  (utilisation du discriminant qui vaut 2)

2°) On revient au cas où  $\alpha$  est un réel quelconque qui n'est pas de la forme  $k\pi$  avec k entier relatif.

Expliquer pourquoi (E) est une équation du second degré.

Calculer ensuite le discriminant  $\Delta$  de (E) et vérifier que la valeur de  $\Delta$  est indépendante de  $\alpha$ .

Justifier que (E) admet toujours deux racines distinctes dans  $\mathbb{R}$  dont on donnera les expressions en fonction de  $\alpha$ .

(E) est 
$$ax^2 + bx + c = 0$$
 avec les coefficients  $a = \sin \alpha$ ,  $b = -\cos \alpha$ ,  $c = -\frac{\sin \alpha}{4}$ .

La condition «  $\alpha$  n'est pas de la forme  $k\pi$  avec k entier relatif » garantit que  $a \neq 0$  et donc (E) est une équation du second degré.

$$\Delta = \left(-\cos\alpha\right)^2 - 4\sin\alpha \times \left(-\frac{\sin\alpha}{4}\right)$$

$$=\cos^2\alpha + \sin^2\alpha$$

=1 (relation fondamentale de la trigonométrie : « La somme des carrés du cosinus et du sinus de n'importe quel réel vaut 1 »)

$$\Delta > 0$$
 donc (E) admet deux racines distinctes dans  $\mathbb{R}$ :  $x_1 = \frac{\cos \alpha + 1}{2 \sin \alpha}$  et  $x_2 = \frac{\cos \alpha - 1}{2 \sin \alpha}$ .

On peut retrouver les solutions obtenues pour les valeurs de  $\alpha$  envisagées à la question 1°).