Devoir pour le 3-11-2014

On considère les suites (a_n) et (b_n) définies sur $\mathbb N$ par leurs premiers termes $a_0=1$ et $b_0=0$ ainsi que par les relations de récurrence $a_{n+1}=a_n+2b_n$ et $b_{n+1}=a_n+b_n$.

- 1°) Démontrer que pour tout entier naturel n, a_n et b_n sont des entiers naturels.
- 2°) Démontrer que pour tout entier naturel n, on a : $\left(1+\sqrt{2}\right)^n=a_n+b_n\sqrt{2}$ et $\left(1-\sqrt{2}\right)^n=a_n-b_n\sqrt{2}$.
- 3°) Calculer $a_n^2 2b_n^2$.
- 4°) En déduire que pour tout entier naturel n, il existe un entier $p \ge 1$ tel que $\left(1 + \sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$.

Corrigé du DM pour le 3-11-2014

1°) Démontrer que pour tout entier naturel n, a_n et b_n sont des entiers naturels.

Pour $n \in \mathbb{N}$, on définit la phrase P(n) : « $a_n \in \mathbb{N}$ et $b_n \in \mathbb{N}$ ».

Vérifions P(0) est vraie.

Par hypothèse $a_0 = 1$ et $b_0 = 0$.

1 et 0 sont des entiers naturels donc P(0) est vraie.

Considérons un entier naturel k tel que P(k) soit vraie c'est-à-dire $a_k \in \mathbb{N}$ et $b_k \in \mathbb{N}$.

Démontrons qu'alors P(k+1) est vraie, c'est-à-dire $a_{k+1} \in \mathbb{N}$ et $b_{k+1} \in \mathbb{N}$.

On a $a_{k+1} = a_k + 2b_k$.

Comme $b_k \in \mathbb{N}$, $2b_k$ est un entier naturel et comme de plus, $a_k \in \mathbb{N}$, $a_k + 2b_k$ est un entier naturel (la somme de deux entiers naturels est un entier naturel).

Donc a_{k+1} est un entier naturel

De même, $b_{k+1} = a_k + b_k$.

Or a_k et b_k sont des entiers naturels.

Donc b_{k+1} est un entier naturel.

D'après le principe de démonstration par récurrence, la propriété P(n) est donc vraie quelque soit $n \in \mathbb{N}$.

2°) Démontrons que pour tout entier naturel n, on a : $\left(1+\sqrt{2}\right)^n=a_n+b_n\sqrt{2}$ et $\left(1-\sqrt{2}\right)^n=a_n-b_n\sqrt{2}$.

Pour $n \in \mathbb{N}$, on définit la phrase P'(n): « $(1+\sqrt{2})^n = a_n + b_n\sqrt{2}$ et $(1-\sqrt{2})^n = a_n - b_n\sqrt{2}$ ».

Vérifions P'(0) est vraie.

On a:
$$(1+\sqrt{2})^0 = 1$$
 et $(1-\sqrt{2})^0 = 1$

Or par hypothèse, on a : $a_0 = 1$ et $b_0 = 0$.

Donc on peut écrire
$$(1+\sqrt{2})^0 = a_0 + b_0\sqrt{2}$$
 et $(1-\sqrt{2})^0 = a_0 - b_0\sqrt{2}$.

La proposition P'(0) est donc vraie.

Considérons un entier naturel k tel que P'(k) soit vraie c'est-à-dire $\left(1+\sqrt{2}\right)^k=a_k+b_k\sqrt{2}$ et

$$\left(1-\sqrt{2}\right)^k = a_k - b_k \sqrt{2}.$$

Démontrons qu'alors P'(k+1) est vraie, c'est-à-dire $\left(1+\sqrt{2}\right)^{k+1} = a_{k+1} + b_{k+1}\sqrt{2}$ et $\left(1-\sqrt{2}\right)^{k+1} = a_{k+1} - b_{k+1}\sqrt{2}$.

$$(1+\sqrt{2})^{k+1} = (1+\sqrt{2}) \times (1+\sqrt{2})^{k}$$

$$= (1+\sqrt{2}) \times (a_{k}+b_{k}\sqrt{2})$$

$$= a_{k}+2b_{k}+(a_{k}+b_{k})\sqrt{2}$$

$$= a_{k+1}+b_{k+1}\sqrt{2}$$

$$(1-\sqrt{2})^{k+1} = (1-\sqrt{2}) \times (1-\sqrt{2})^{k}$$

$$= (1-\sqrt{2}) \times (a_{k}-b_{k}\sqrt{2})$$

$$= a_{k}+2b_{k}-(a_{k}+b_{k})\sqrt{2}$$

$$= a_{k+1}-b_{k+1}\sqrt{2}$$

D'après le principe de démonstration par récurrence, la propriété P'(n) est donc vraie quelque soit $n \in \mathbb{N}$.

3°) Calculons $a_n^2 - 2b_n^2$.

$$a_n^2 - 2b_n^2 = (a_n + b_n \sqrt{2})(a_n - b_n \sqrt{2})$$

$$= (1 + \sqrt{2})^n \times (1 - \sqrt{2})^n$$

$$= [(1 + \sqrt{2}) \times (1 - \sqrt{2})]^n$$

$$= (1 - 2)^n$$

$$= (-1)^n$$

4°) Déduisons-en que pour tout entier naturel n, il existe un entier $p \ge 1$ tel que $\left(1 + \sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$.

D'après la question 2) on a $\left(1+\sqrt{2}\right)^n=a_n+b_n\sqrt{2}$ donc on peut écrire $\left(1+\sqrt{2}\right)^n=\sqrt{a_n^2}+\sqrt{2b_n^2}$.

 1^{er} cas : n est pair

Dans ce cas, la relation établie au 3°) donne : $a_n^2 - 2b_n^2 = 1$.

Posons $p = a_n^2$.

p est un entier naturel et on a $p-1=a_n^2-1=2b_n^2$.

Donc
$$\left(1+\sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$$

 2^{e} cas : n est impair

Dans ce cas, la relation établie au 3°) donne : $a_n^2 - 2b_n^2 = -1$.

Posons $p = b_n^2$.

p est un entier naturel et on a $p-1=2b_n^2=a_n^2$.

Donc
$$\left(1+\sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$$
.

En réunissant les deux cas, on a démontré que pour tout entier naturel n, il existe un entier $p \ge 1$ tel que $\left(1+\sqrt{2}\right)^n = \sqrt{p} + \sqrt{p-1}$.