TS1

Contrôle du jeudi 19 septembre 2013 (50 minutes)

Prénom et nom: Note: / 20

I. (3 points)

Déterminer la forme algébrique des trois nombres complexes suivants :

$$z_1 = i(3+2i)(2+i)^2$$
; $z_2 = -i(3-2i)(2-i)^2$; $z_3 = \frac{(3+2i)(2+i)}{2-i}$.

 $z_1 = \dots$ $z_2 = \dots$ $z_3 = \dots$

II. (4 points)

Déterminer les ensembles de solutions notés S_1 , S_2 , S_3 , S_4 des équations suivantes d'inconnue complexe z (résolution au brouillon).

$$(iz+1)^2 = -1 \quad (1); \quad z + \frac{1}{z} = 1 \quad (2); \quad 2z - (1+i)\overline{z} = -1 + 5i \quad (3); \quad (z-i)\left(2i - \frac{1}{z}\right) = z - i \quad (4).$$

$$S_1 = \dots \qquad \qquad S_2 = \dots \qquad \qquad S_3 = \dots \qquad \qquad S_4 = \dots \qquad \qquad S_4 = \dots \qquad \qquad S_5 = \dots \qquad S_5$$

III. (7 points)

Pour tout nombre complexe z, on pose $Z = z(4i - \overline{z})$.

1°) On pose z = x + iy où x et y sont deux réels. Exprimer la partie réelle et la partie imaginaire de Z en fonction de x et y.

$$\operatorname{Re} Z = \dots \qquad \operatorname{Im} Z = \dots$$

2°) Le plan complexe P est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

Déterminer l'ensemble E des points M de P, d'affixe z, tels que Z soit imaginaire pur.

On rédigera soigneusement à l'aide d'une chaîne d'équivalences.

•••••			
IV. (6 points)			
IV. (6 points)			
	ore complexe z distinct de i, on pose $z' =$	$\frac{z+i}{iz+1}$. Les deux questions sont indépende	antes.
Pour tout nomb	= x + iy où x et y sont deux réels tels que		antes.
Pour tout nomb	ore complexe z distinct de i, on pose $z' = x + iy$ où x et y sont deux réels tels que rtie réelle et la partie imaginaire de z' er	$(x;y)\neq (0;1).$	antes.
Pour tout nomb	= x + iy où x et y sont deux réels tels que	$(x;y)\neq (0;1).$	antes.
Pour tout nomb 1°) On pose z: Exprimer la pa	= x + iy où x et y sont deux réels tels que rtie réelle et la partie imaginaire de z' er	$(x; y) \neq (0; 1)$. In fonction de x et y .	antes.
Pour tout nomb 1°) On pose z: Exprimer la pa	$= x + iy$ où x et y sont deux réels tels que rtie réelle et la partie imaginaire de z' er $Re \ z' = \dots$	$(x; y) \neq (0; 1)$. In fonction de x et y .	antes.
Pour tout nomb 1°) On pose z: Exprimer la pa	$= x + iy$ où x et y sont deux réels tels que rtie réelle et la partie imaginaire de z' er $Re \ z' = \dots$	$(x; y) \neq (0; 1)$. In fonction de x et y .	antes.

Corrigé du contrôle du 19-9-2013

I.
$$z_1 = i(3+2i)(2+i)^2$$
; $z_2 = -i(3-2i)(2-i)^2$; $z_3 = \frac{(3+2i)(2+i)}{2-i}$

$$z_1 = -18 + i$$

$$z_2 = -18 - i$$

$$z_3 = \frac{1+18i}{5}$$

- On pouvait vérifier (ou même effectuer) tous ces calculs avec la calculatrice.
- On pouvait aussi observer que le nombre z_2 est le conjugué de z_1 ; il n'y avait donc quasiment pas de calcul à faire.

II.
$$(iz+1)^2 = -1$$
 (1); $z + \frac{1}{z} = 1$ (2); $2z - (1+i)z = -1 + 5i$ (3); $(z-i)(2i - \frac{1}{z}) = z - i$ (4)

$$S_1 = \{i-1; i+1\}$$

$$S_2 = \left\{ \frac{1 - i\sqrt{3}}{2}; \frac{1 + i\sqrt{3}}{2} \right\}$$
 $S_3 = \left\{ 1 + 2i \right\}$

$$S_3 = \left\{1 + 2i\right\}$$

$$S_4 = \left\{ i ; \frac{2i-1}{5} \right\}$$

Quelques détails pour la résolution :

• (1)
$$\Leftrightarrow$$
 $(iz+1)^2 = i^2$
 \Leftrightarrow $iz+1=i$ ou $iz+1=-i$
 $\Leftrightarrow ...$

• On résout (2) dans \mathbb{C}^* .

$$(2) \Leftrightarrow z^2 + 1 = z$$
$$\Leftrightarrow z^2 - z + 1 = 0$$

Cette dernière équation est une équation du second degré à coefficients réels.

On calcule son discriminant.

On trouve $\Delta = -3$.

• Pour l'équation (3), on pose z = x + iy avec x et y réels.

• (4)
$$\Leftrightarrow$$
 $(z-i)\left(2i-\frac{1}{z}\right)-(z-i)=0$
 \Leftrightarrow $(z-i)\left(2i-\frac{1}{z}-1\right)=0$
 \Leftrightarrow $(z-i)\left(2i-1-\frac{1}{z}\right)=0$
 \Leftrightarrow $z-i=0$ ou $\frac{1}{z}=2i-1$
 \Leftrightarrow $z=i$ ou $z=\frac{1}{2i-1}$
 \Leftrightarrow $z=i$ ou $z=\frac{-2i-1}{5}$
 \Leftrightarrow $z=i$ ou $z=\frac{2i-1}{5}$

III.

$$Z = z \left(4i - \overline{z} \right) \quad (z \in \mathbb{C})$$

1°)
$$z = x + iy$$
 (x et y : réels)

Exprimons la partie réelle et la partie imaginaire de Z en fonction de x et y.

Re
$$Z = -x^2 - y^2 - 4y$$
 Im $Z = 4x$

2°) Déterminons l'ensemble $E = \{M(z) \in P / Z \in i\mathbb{R}\}$.

Soit M un point quelconque de P d'affixe z = x + iy ($(x; y) \in \mathbb{R}^2$).

$$M \in E \Leftrightarrow Z \in i\mathbb{R}$$

 $\Leftrightarrow \text{Re } Z = 0$
 $\Leftrightarrow -x^2 - y^2 - 4y = 0$
 $\Leftrightarrow x^2 + y^2 + 4y = 0$
 $\Leftrightarrow x^2 + (y+2)^2 = 4$

L'ensemble E est le cercle de centre Ω (0; – 2) et de rayon 2.

$$z' = \frac{z+i}{iz+1} \quad (z \neq i)$$

1°) z = x + iy (x et y sont deux réels tels que $(x; y) \neq (0; 1)$)

Exprimons la partie réelle et la partie imaginaire de z' en fonction de x et y.

Re
$$z' = \frac{2x}{x^2 + (-y+1)^2}$$

Im
$$z' = \frac{-x^2 - y^2 + 1}{x^2 + (-y + 1)^2}$$

Solution détaillée :

$$z' = \frac{z+i}{iz+1}$$

$$= \frac{(x+iy)+i}{i(x+iy)+1}$$

$$= \frac{x+i(y+1)}{(1-y)+ix}$$

$$= \frac{[x+i(y+1)][(1-y)-ix]}{[(1-y)+ix][(1-y)-ix]}$$

$$= \frac{x(1-y)+x(y+1)+i(-x^2+(y+1)(1-y))}{(1-y)^2+x^2}$$

$$= \frac{2x+i(-x^2-y^2+1)}{(1-y)^2+x^2}$$

2°) Démontrons que : (z'+i)(z-i)=2.

$$(z'+i)(z-i) = \left(\frac{z+i}{iz+1}+i\right)(z-i)$$

$$= \frac{z+i-z+i}{iz+1} \times (z-i)$$

$$= \frac{2i}{iz+1} \times (z-i)$$

$$= \frac{2(iz+1)}{iz+1}$$

$$= 2$$