TS

Exercices sur la limite d'une composée de fonctions

On pourra utiliser l'application photomath pour certaines limites.

1 On considère la fonction
$$f: x \mapsto \sqrt{\frac{2x-1}{x+3}}$$
.

Déterminer la limite de f en $+\infty$.

2 On considère la fonction
$$f: x \mapsto \sin \frac{1}{\sqrt{x}}$$
.

Déterminer la limite de f en $+\infty$.

3 On considère la fonction
$$f: x \mapsto \ln\left(\frac{x^2}{x+2}\right)$$
.

Déterminer la limite de f en $+\infty$.

4 On considère la fonction
$$f: x \mapsto \frac{\sin 5x}{x}$$
.

Déterminer la limite de f en 0.

$$\boxed{\textbf{5}} \text{ On considère la fonction } f: x \mapsto \frac{\sin 2x}{\sin 3x}.$$

Déterminer la limite de f en 0.

6 1°) Déterminer
$$\lim_{x \to +\infty} E(x)$$
 et $\lim_{x \to -\infty} E(x)$ puis $\lim_{x \to +\infty} \frac{E(x)}{x}$ et $\lim_{x \to -\infty} \frac{E(x)}{x}$.

2°) Déterminer
$$\lim_{x \to +\infty} \frac{E(ax)}{E(bx)}$$
 où a et b sont deux réels non nuls.

On pourra se contenter de faire la démonstration dans le cas où a et b sont strictement positifs.

7 On admet le théorème suivant, dit théorème de limite de composée « suite-fonction ».

On considère une suite (x_n) et une fonction f telle que toutes les valeurs de la suite appartiennent à l'intervalle de définition de f.

Si
$$\lim_{n \to +\infty} x_n = a$$
 et $\lim_{x \to a} f(x) = b$, alors $\lim_{n \to +\infty} f(x_n) = b$.

Déterminer
$$\lim_{n \to +\infty} \left(n \ln \left(1 + \frac{1}{n} \right) \right)$$
 et $\lim_{n \to +\infty} \left(n \sin \frac{2}{n} \right)$.

Pour la première limite, on utilisera la limite suivante $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

8 Déterminer la limite de la suite (u_n) définie sur \mathbb{N}^* par $u_n = \left(1 + \frac{1}{n}\right)^n$ pour tout entier naturel $n \ge 1$.

Indications:

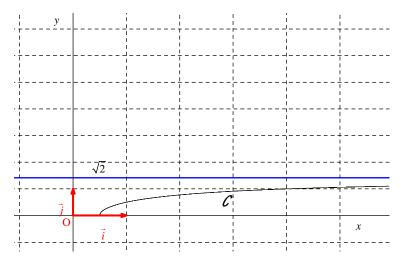
- Écrire $u_n = e^{n \ln \left(1 + \frac{1}{n}\right)}$ pour tout entier naturel $n \ge 1$.
- Utiliser la limite de référence $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ vue dans le chapitre « Logarithme népérien (2) ».

Corrigé

1
$$D_f =]-\infty; -3[\bigcup \left[\frac{1}{2}; +\infty\right]]$$
 (par tableau de signes); $\lim_{+\infty} f = \sqrt{2}$ (limite d'une composée)

Solution détaillée :

$$f\colon x\mapsto \sqrt{\frac{2x-1}{x+3}}$$



f(x) existe si et seulement si $\begin{cases} x+3 \neq 0 \\ \frac{2x-1}{x+3} \ge 0 \end{cases}$.

Étudions le signes de $\frac{2x-1}{x+3}$.

<i>x</i>	- ∞	- 3		$\frac{1}{2}$		+ ∞
Signe de $2x-1$	_		-	0^{num}	+	
Signe de $x+3$	_	$0^{\text{déno}}$	+		+	
Signe de $\frac{2x-1}{x+3}$	+		_	O ^{num}	+	

$$\mathcal{D}_f =]-\infty; -3[\cup \left[\frac{1}{2}; +\infty\right]$$

Remarque : Il ne faut pas transformer f(x) en $f(x) = \frac{\sqrt{2x-1}}{\sqrt{x+3}}$.

Pour trouver un ensemble de définition, on raisonne sur la forme de base.

$$\lim_{x \to +\infty} \frac{2x-1}{\underbrace{x+3}_{X}} = \lim_{x \to +\infty} \frac{2x}{x} = 2 \quad *$$

$$\lim_{x \to 2} \sqrt{X} = \sqrt{2}$$
donc par limite d'une composée $\lim_{x \to +\infty} f(x) = \sqrt{2}$.

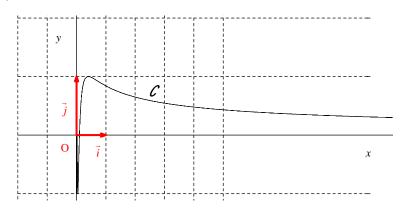
* On applique la règle du quotient simplifié des monômes de plus haut degré pour une fonction rationnelle non nulle en $+\infty$ ou en $-\infty$.

La courbe représentative de f admet la droite d'équation $y = \sqrt{2}$ pour asymptote horizontale en $+\infty$.

$$2$$
 $D_f = \mathbb{R}_+^*$; $\lim_{t \to \infty} f = 0$ (limite d'une composée)

Solution détaillée :

$$f: x \mapsto \sin \frac{1}{\sqrt{x}}$$



f(x) existe si et seulement si x > 0.

On trouve $\mathcal{D}_f = \mathbb{R}_+^*$.

On peut écrire $f = v \circ u$ où u et v sont les fonctions définies par $u(x) = \frac{1}{\sqrt{x}}$ et $v(x) = \sin x$.

$$\lim_{\substack{x \to +\infty \\ X \to 0}} \frac{1}{\sqrt{\frac{x}{x}}} = 0 \quad *$$

$$\lim_{\substack{x \to +\infty \\ X \to 0}} \sin X = 0 \quad **$$

$$\lim_{\substack{x \to +\infty \\ X \to 0}} f(x) = 0.$$

* On pourrait écrire $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0^+$ mais la précision donnée par le + ne sert pas du tout pour la suite donc cela ne sert à rien de le mettre.

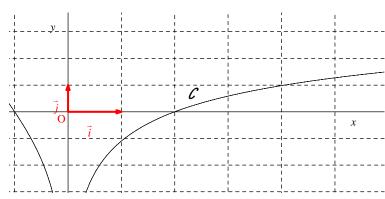
** On utilise $\sin 0 = 0$.

La courbe représentative de f admet l'axe des abscisses pour asymptote horizontale en $+\infty$.

3
$$\mathcal{O}_f =]-2;0[\cup]0;+\infty[;\lim_{t\to\infty}f=+\infty \text{ (limite d'une composée)}]$$

Solution détaillée :

$$f: x \mapsto \ln \frac{x^2}{x+2}$$



$$f(x)$$
 existe si et seulement si
$$\begin{cases} x+2 \neq 0 \\ \frac{x^2}{x+2} > 0 \end{cases}$$

On fait un tableau de signes pour $\frac{x^2}{x+2}$.

<i>x</i>	- ∞	-2	0	+ ∞
Signe de x^2	+	+	- O ^{num}	+
Signe de $x+2$	_	O ^{déno} +		+
Signe de $\frac{x^2}{x+2}$	_	4	+ 0 ^{num}	+

$$D_f =]-2;0[\cup]0;+\infty[$$

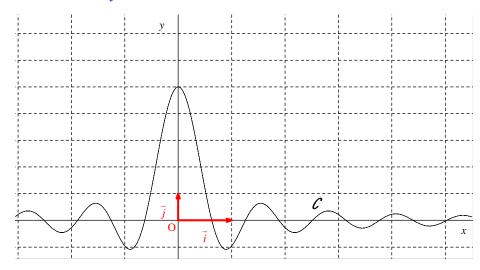
$$\lim_{x \to +\infty} \frac{x^2}{x+2} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} \lim_{x \to +\infty} \ln X = +\infty$$
donc par limite d'une composée $\lim_{x \to +\infty} f(x) = +\infty$.

* On applique la règle du quotient simplifié des monômes de plus haut degré qui permet de déterminer la limite d'une fonction rationnelle non nulle en $+\infty$ ou en $-\infty$.

$$4f: x \mapsto \frac{\sin 5x}{x}$$

Déterminons la limite de f en 0.



La recherche de l'ensemble de définition n'a pas grand intérêt ici (c'est \mathbb{R}^*).

Attention, à la convention d'écriture $\sin 5x = \sin (5x)$.

Pour déterminer la limite de f en 0, on utilise la méthode de changement de variable (réécriture). Il n'y a pas d'autre façon de faire (le théorème des gendarmes ne marche pas en 0 ; il ne marche qu'en $+\infty$ et $-\infty$).

$$X = 5x$$
 \Leftrightarrow $\frac{X}{5} = x$
 $(x \to 0)$ \Leftrightarrow $(X \to 0)$

On effectue la réécriture de l'expression en fonction de X.

$$\frac{\sin 5x}{x} = 5 \frac{\sin X}{X}$$

$$\lim_{X \to 0} \frac{\sin X}{X} = 1$$
 (limite de référence)

Donc
$$\lim_{x\to 0} f(x) = 5$$

Autre méthode:

On utilise les dérivées.

$$\forall x \in \mathbb{R}^* \quad \frac{\sin 5x}{x} = \frac{\sin 5x - \sin (5 \times 0)}{x - 0}$$

Ce quotient est le taux d'accroissement de la fonction $u: t \mapsto \sin 5t$ entre 0 et x.

Or la fonction u est dérivable en 0.

Donc la limite en 0 de ce taux est le nombre dérivé de la fonction u en 0.

Or $\forall t \in \mathbb{R}$ $u'(t) = 5\cos 5t$.

Donc
$$\lim_{x \to 0} \frac{\sin 5x}{x} = 5 \times \cos(5 \times 0) = 5 \times 1 = 5$$
.

$$5 f: x \mapsto \frac{\sin 2x}{\sin 3x}$$

Déterminons la limite de f en 0.

On effectue la réécriture $f(x) = \frac{\sin 2x}{2x} \times \frac{3x}{\sin 3x} \times \frac{2}{3}$.

Comme toujours, la réécriture est plus compliquée mais elle va permettre de simplifier la recherche.

On peut ainsi utiliser ensuite la limite de référence $\lim_{X\to 0} \frac{\sin X}{X} = 1$.

Grâce à la limite d'une composée (non détaillée ici), on a :

$$\lim_{x \to 0} \frac{\sin 2x}{2x} = 1$$

 $\lim_{x \to 0} \frac{\sin 3x}{3x} = 1 \text{ d'où par passage à l'inverse, } \lim_{x \to 0} \frac{3x}{\sin 3x} = \frac{1}{1} = 1.$

Si
$$\lim_{x \to a} f(x) = 1$$
 avec $1 \in \mathbb{R}^*$, alors $\lim_{x \to a} \frac{1}{f(x)} = 1$.

On en déduit que $\boxed{\lim_{x \to 0} f(x) = \frac{2}{3}}$

On peut utiliser l'application photomath.

On peut retrouver certaines limites graphiquement.

6

1°) Déterminer
$$\lim_{x \to +\infty} E(x)$$
 et $\lim_{x \to -\infty} E(x)$ puis $\lim_{x \to +\infty} \frac{E(x)}{x}$ et $\lim_{x \to -\infty} \frac{E(x)}{x}$

Par définition de la partie entière, on a $\forall x \in \mathbb{R}$ $E(x) \leq x < E(x) + 1$ (1).

Donc E(x)+1>x.

D'où $\forall x \in \mathbb{R} \quad E(x) > x-1$.

On a $\forall x \in \mathbb{R}$ $E(x) \ge x - 1$ (une inégalité stricte entraı̂ne une inégalité large)

$$\lim_{x \to +\infty} (x-1) = +\infty$$

Donc d'après l'extension du théorème des gendarmes, $\lim_{x \to +\infty} E(x) = +\infty$.

 $\forall x \in \mathbb{R} \quad E(x) \leqslant x$

$$\lim_{x \to \infty} x = -\infty$$

On en déduit que $\lim_{x \to -\infty} E(x) = -\infty$.

D'après (1), $\forall x \in \mathbb{R}$ $E(x) \leq x$ (i) et x < E(x) + 1.

Donc E(x) > x-1 (ii).

D'où (i) et (ii) donnent $x-1 < E(x) \le x$.

Par conséquent, $\forall x \in \mathbb{R}_{+}^{*} \quad \frac{x-1}{x} < \frac{E(x)}{x} \leqslant \frac{x}{x} \text{ soit } \forall x \in \mathbb{R}_{+}^{*} \quad \frac{x-1}{x} < \frac{E(x)}{x} \leqslant 1 \text{ que l'on peut encore écrire}$ $1 - \frac{1}{x} < \frac{E(x)}{x} \leqslant 1 \text{ (qui entraîne } 1 - \frac{1}{x} \leqslant \frac{E(x)}{x} \leqslant 1).$

 $\lim_{x \to +\infty} \left(1 - \frac{1}{x} \right) = 1 \text{ et } \lim_{x \to +\infty} 1 = 1 \text{ donc d'après le théorème des gendarmes}, \lim_{x \to +\infty} \frac{E(x)}{x} = 1.$

On démontre de même que $\lim_{x \to -\infty} \frac{E(x)}{x} = 1$.

2°) Déterminer $\lim_{x \to +\infty} \frac{E(ax)}{E(bx)}$ où a et b sont deux réels non nuls.

On effectue une réécriture : $\frac{E(ax)}{E(bx)} = \frac{E(ax)}{ax} \times \frac{bx}{E(bx)} \times \frac{a}{b}$.

On se place dans le cas où a > 0 et b > 0.

D'après la question 1°), $\lim_{X \to +\infty} \frac{E(X)}{X} = 1$.

Donc $\lim_{x \to +\infty} \frac{E(ax)}{E(bx)} = \frac{a}{b}$.

On peut faire pareil dans les trois autres cas.

Déterminer
$$\lim_{n \to +\infty} \left(n \ln \left(1 + \frac{1}{n} \right) \right)$$
 et $\lim_{n \to +\infty} \left(n \sin \frac{2}{n} \right)$.

•
$$u_n = n \ln \left(1 + \frac{1}{n} \right)$$

On rencontre une forme indéterminée du type « $0 \times \infty$ ».

On a
$$\forall n \in \mathbb{N}^*$$
 $u_n = \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}$.

On considère :

la suite (x_n) définie sur \mathbb{N}^* par $x_n = \frac{1}{n}$;

la fonction $f: x \mapsto \frac{\ln(1+x)}{x}$.

$$u_n = f(x_n)$$

On a
$$\lim_{n\to+\infty}\frac{1}{n}=0$$
.

On sait que $\lim_{x \to 0} f(x) = 1$ [$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ (limite de référence)].

On a donc $\lim_{n\to+\infty} u_n = 1$.

•
$$v_n = n \sin \frac{2}{n}$$

On rencontre une forme indéterminée du type « $0 \times \infty$ ».

$$\forall n \in \mathbb{N}^* \quad v_n = \frac{\sin\frac{2}{n}}{\frac{2}{n}} \times 2$$

On considère :

la suite (y_n) définie sur \mathbb{N}^* par $y_n = \frac{2}{n}$;

la fonction $g: x \mapsto \frac{\sin x}{x}$.

$$v_n = g(y_n) \times 2$$

On a
$$\lim_{n\to+\infty}\frac{1}{n}=0$$
.

On sait que $\lim_{x \to 0} g(x) = 1$ $\lim_{x \to 0} \frac{\sin x}{x} = 1$ (limite de référence)].

On en déduit que $\lim_{n \to +\infty} g(y_n) = 1$.

Par conséquent, $\lim_{n \to +\infty} v_n = 2$.

8 Déterminer la limite de la suite (u_n) définie sur \mathbb{N}^* par $u_n = \left(1 + \frac{1}{n}\right)^n$ pour tout entier naturel $n \ge 1$.

Indications:

- Écrire $u_n = e^{n\ln\left(1+\frac{1}{n}\right)}$ pour tout entier naturel $n \ge 1$.
- Utiliser la limite de référence $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ vue dans le chapitre « Logarithme népérien (2) ».

On rencontre une forme indéterminée du type « 1^{∞} ».

$$\forall n \in \mathbb{N}^* \quad u_n = e^{n \ln\left(1 + \frac{1}{n}\right)}$$

 $\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n} \right) = 1 \text{ (limite trouvée dans l'exercice précédent) donc } \lim_{n \to +\infty} u_n = e.$

Il s'agit d'une convergence lente comme on s'en rend compte à la calculatrice.