TS3

Contrôle de mathématiques Samedi 27 septembre 2008 (2 heures)

La calculatrice n'est pas autorisée.

\square Il est demandé de soigner particulièrement l'orthographe, la présentation et la rédaction ; on n'oubliera		
pas en particulier d'encadrer en rouge à la règle tous les résultats demandés.		
\square L'en-tête de la copie doit être correctement libellé : nom, prénom, classe, date, intitulé exact sans		
abréviations ainsi qu'un cartouche de présentation avec le numéro des exercices.		
□ A la fin de l'épreuve, il est demandé de ne pas joindre l'énoncé dans la copie mais de le garder.		

I. (6 points) Remplir un tableau horizontal sur la copie en indiquant si la phrase correspondante est vraie (V) ou fausse (F). Aucune justification n'est demandée.

Une réponse juste rapporte 0,5 point ; une réponse fausse enlève 0,5 point.

L'absence de réponse n'enlève aucun point.

1	Pour tout entier relatif n , on a : $e^{-n \ln 2} = \frac{1}{2^n}$.
2	Pour tout réel a strictement positif, on a : $\left(\ln \sqrt{a}\right)^3 = \frac{3\ln a}{8}$.
3	La solution de l'équation $\frac{4}{1+e^{-x}} = 3$ est ln 3.
4	Pour tout réel x , on $a: e^{-x} \le e^x$.
5	Pour tout réel <i>x</i> , on a : $e^{2x} - e^x = e^x (e^2 - 1)$.
6	L'ensemble des solutions de l'inéquation $e^{(x^2)} \ge e^x$ est l'intervalle $[1; +\infty[$.
7	Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^x + 1}$. Pour tout réel x , on a : $f(x) = \frac{1}{e^{-x} + 1}$.
8	Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{e^x + 1}$. Pour tout réel x , on a : $f'(x) = -\frac{1}{\left(e^x + 1\right)^2}$.
9	L'équation $2 \ln x = \ln (2x+3)$ admet deux solutions dans \mathbb{R} .
10	Pour tout réel a strictement positif, on a : $\ln(a^2 + 3a) = 2 \ln a + \ln(3a)$.

11	La solution de l'équation $e^x - 4e^{-x} = 0$ est ln 2.
12	On a: $\lim_{x \to 0^+} \frac{\ln x}{x} = -\infty.$

II. (2 points) On note \mathcal{C} la représentation graphique de la fonction logarithme népérien dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$.

Soit a et b deux réels strictement positifs fixés.

On note A et B les points de \mathcal{C} d'abscisses respectives a et b.

Soit I le milieu du segment [AB]. La parallèle à l'axe des abscisses passant par I coupe la courbe $\mathcal C$ en un point J.

Calculer l'abscisse de J en fonction de a et b.

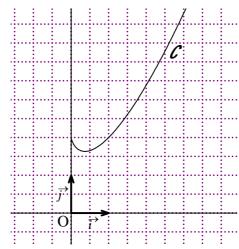
- **III.** (7 points) On considère la fonction f définie sur \mathbb{R} par $f(x) = (ax+b)e^{-x}$ où a et b sont deux réels et on note \mathcal{C} sa représentation graphique dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$.
- 1°) Déterminer a et b sachant que \mathcal{C} passe par les points A(-2;0) et B(0;2).
- 2°) Dans la suite, on prend pour a et b les valeurs obtenues au 1°). Ecrire alors l'expression de f. Etudier f (dérivée en donnant le résultat sous forme factorisée ; limites en détaillant et conséquences graphiques éventuelles ; tableau de variation complet fait avec soin, notamment pour les flèches de variations à la règle). 3°) Déterminer l'équation réduite de la tangente T à \mathcal{C} au point B.
- 4°) Soit Γ la courbe d'équation $y = e^{-x}$.

Etudier la position de \mathcal{L} par rapport à Γ . Présenter l'étude dans un tableau.

IV. (4 points) 1°) Etudier le signe de $\ln x + 1$ suivant les valeurs de x (x > 0) en détaillant bien la démarche.

2°) Dans cette question, l'élève est invité à porter sur sa copie les étapes de sa démarche même si elle n'aboutit pas.

On considère la fonction f définie sur \mathbb{R}_+^* par $f(x) = x \ln x + 2$ et on note \mathcal{C} sa représentation graphique dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$. La courbe \mathcal{C} est donnée ci-dessous.



Etablir que f admet un minimum global sur \mathbb{R}_{+}^{*} et donner la valeur exacte de ce minimum.

Il y a un point pour la présentation de la copie, la rédaction et l'orthographe.