Exercices sur les fonctions de deux variables (2)

1 Soit f la fonction définie sur \mathbb{R}^2 par $f(x; y) = x^3 + 3x^2y + y^3$.

Existe-t-il des points pour lesquels $\frac{\partial f}{\partial x}(x;y) = 0$ et $\frac{\partial f}{\partial y}(x;y) = 0$?

La fonction f possède-t-elle des extremums locaux ? (on calculera f(x;x)).

2 On considère la fonction f définie par $f(x; y) = xy - \frac{y^2}{2} + \frac{1}{x}$.

Déterminer les extremums globaux et locaux de f sur $\Omega = \{(x; y) \in \mathbb{R}^2 / x > 0\}$.

3 Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = xy e^{-\frac{x^2+y^2}{2}}$.

1°) On considère la fonction φ définie sur \mathbb{R} par $\varphi(u) = u e^{-\frac{u^2}{2}}$.

Étudier les variations de φ.

2°) On constate que $\forall (x, y) \in \mathbb{R}^2$ $f(x, y) = \varphi(x) \varphi(y)$.

Déterminer les points critiques de f sur \mathbb{R}^2 .

3°) En utilisant la question 1°), démontrer que $\forall (x, y) \in \mathbb{R}^2 \mid f(x, y) \mid \leq \frac{1}{e}$.

En déduire les extremums de f sur \mathbb{R}^2 .

- 4 Soit f la fonction de \mathbb{R}^2 dans \mathbb{R} définie par $f(x, y) = x^4 + y^4 (x y)^2$.
- 1°) a) Vérifier que (0, 0) est un point critique de f.
- b) Déterminer le signe de f(h,h) et puis de f(-h,h); en déduire la nature du point critique (0,0).
- 2°) Déterminer les points critiques de f sur \mathbb{R}^2 . Donner les valeurs des extremums éventuels de f sur \mathbb{R}^2 .
- 3°) Développer $(x^2-1)^2 + (y^2-1)^2 + (x+y)^2 2$.

En déduire les extremums de f sur \mathbb{R}^2 .

- **5** Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = x e^{x(y^2+1)}$.
- 1°) Déterminer le ou les point(s) critique(s) de f sur \mathbb{R}^2 .
- 2°) a) Démontrer que $\forall (x, y) \in \mathbb{R}^2$ $f(x, y) \ge xe^x$.
 - b) En étudiant la fonction $g: x \mapsto xe^x$, conclure sur le (ou les) extremum(s) de f sur \mathbb{R}^2 .
- **6** Déterminer les extremums de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$

$$(x, y) \mapsto \frac{y}{x^2 + y^2 + 1}$$

7 Soit F une fonction de \mathbb{R}^2 dans \mathbb{R} de classe \mathbb{C}^1 .

On considère la fonction f définie sur \mathbb{R} par f(t) = F(t,t).

Démontrer que f est de classe C^1 et calculer f'(t).

8 1°) Étudier la fonction $\varphi: t \mapsto \ln t + 2t + 1$. Démontrer qu'il existe un unique réel α tel que $\varphi(\alpha) = 0$.

2°) On considère la fonction f définie sur $\Omega = \mathbb{R}^*_+ \times \mathbb{R}$ par $f(x; y) = x(\ln x + x + y^2)$.

Déterminer le seul point critique de f.

Démontrer que f admet un minimum global sur Ω égal à $m = -\alpha(\alpha + 1)$.

9 On cherche toutes les fonctions f continues de \mathbb{R} dans \mathbb{R} telles que :

$$\forall (x, y) \in \mathbb{R}^2 \quad f(x) f(y) = \int_{x=y}^{x+y} f(t) dt.$$

- 1°) Démontrer qu'une telle fonction est de classe C° .
- 2°) Démontrer qu'une telle fonction est impaire.
- 3°) Lorsque f n'est pas la fonction constante nulle, déterminer f'(0).
- 4°) Démontrer que $\forall (x, y) \in \mathbb{R}^2$ f''(x) f(y) = f(x) f''(y). Conclure.

10 Soit f et g deux fonctions de classe C^2 de \mathbb{R} dans \mathbb{R} .

On considère la fonction u définie par $u(x, y) = x f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$.

Démontrer que l'on a : $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

11 Soit φ une fonction de classe C^1 de \mathbb{R} dans \mathbb{R} .

On considère la fonction u définie par $u(x, y) = xy + x \varphi\left(\frac{y}{x}\right)$.

Démontrer que u vérifie : $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = xy + u(x, y)$.

12 Soit \star une loi de groupe sur \mathbb{R} telle que $f: \mathbb{R}^2 \to \mathbb{R}$ soit de classe \mathbb{C}^1 .

$$(x, y) \mapsto x \star y$$

On note *e* l'élément neutre.

Démontrer que $\forall (x, y) \in \mathbb{R}^2$ $D_2 f(x \star y, e) = D_2 f(x, e)$ $D_2 f(y, e)$ où D_2 désigne l'opérateur de dérivation par rapport à la deuxième variable.

Indication: considérer la fonction g définie par $g(z) = f(x \star y, z)$.

13 On considère la fonction f définie sur \mathbb{R}^2 par $f(x, y) = \frac{1}{2} \times \cos x \cos y + xy$.

Vérifier que (0, 0) est point critique de f. f admet-elle un extremum local en (0, 0)?

14 On considere la fonction f définie sur \mathbb{R}^2 par $f(x, y) = x^2 - 2x + y^3$.

Déterminer le (les) point(s) critique(s) de f.

Calculer f(0,-2) et f(0,2).

La fonction f admet-elle un extremum global?

15 On considère la fonction f définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par $f(x,y) = \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}$.

 1°) Démontrer que f est prolongeable par continuité en (0, 0).

On note \tilde{f} le prolongement par continuité de f sur \mathbb{R}^2 .

2°) Calculer
$$\frac{\partial \tilde{f}}{\partial x}(0;0)$$
 et $\frac{\partial \tilde{f}}{\partial y}(0;0)$.

16 Soit f une fonction continue de \mathbb{R} dans \mathbb{R} . On considère la fonction F définie sur \mathbb{R}^2 par

$$\forall (x, y) \in \mathbb{R}^2 \quad F(x, y) = \int_{x-y}^{x+y} f(t) dt$$
.

Démontrer que F est de classe \mathbb{C}^1 .

Calculer
$$\frac{\partial F}{\partial x}$$
 et $\frac{\partial F}{\partial y}$.

17 Soit g une fonction de \mathbb{R}^2 dans \mathbb{R} de classe \mathbb{C}^2

On pose f(x, y) = g(x + y, x - y).

1°) Calculer
$$\frac{\partial f}{\partial x}$$
 et $\frac{\partial f}{\partial y}$.

2°) On pose
$$G(x, y) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$
 et $H(x, y) = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}$.

En utilisant G et H, calculer $\frac{\partial^2 f}{\partial r^2}$, $\frac{\partial^2 f}{\partial v^2}$, $\frac{\partial^2 f}{\partial r \partial v}$.

3°) Déterminer g telle que l'on ait : $\frac{\partial^2 f}{\partial v^2} - \frac{\partial^2 f}{\partial v^2} = 0$.

18 On considère la fonction f définie sur \mathbb{R}^2 par $f(x, y) = x^2 + y$.

Représenter le gradient aux points (1;0), (2;0) et (0;1).

19 On considère le champ de vecteurs qui à tout point (x, y) de \mathbb{R}^2 associe le vecteur $\vec{V}(x, y) = \begin{pmatrix} 2x \\ 3x+1 \end{pmatrix}$. Tracer $\vec{V}(1,2)$ et $\vec{V}(2,1)$.

20 On considère le champ de vecteurs qui à tout point (x, y) de \mathbb{R}^2 associe le vecteur $\overrightarrow{V}(x, y) = \begin{pmatrix} 6x + 2y \\ 2x \end{pmatrix}$. Vérifier que $f(x, y) = 3x^2 + 2xy$ est un potentiel de \vec{V} .

21 On considère le champ de vecteurs
$$\vec{V}(x, y) = \begin{pmatrix} 2xy+1 \\ x^2+2 \end{pmatrix}$$
.

- 1°) Représenter \vec{V} au point (0:0), (0:1) et (1:1).
- 2°) Le champ \vec{V} admet-il des potentiels ?
- 3°) $f_1(x, y) = x^2y + y$ est-il un potentiel de \vec{V} ? $f_2(x, y) = x^2y + x + 2y$ est-il un potentiel de \vec{V} ?
- 4°) Trouver d'autres potentiels de \vec{V} .

22 On considère le champ de vecteurs
$$\vec{V}(x, y) = \begin{pmatrix} 2xy \\ x^2 \end{pmatrix}$$

- 1°) Représenter \vec{V} au point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, au point $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et au point $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- 2°) Démontrer que \vec{V} admet un potentiel.
- 3°) Vérifier que $f(x, y) = x^2y$ est un potentiel de \vec{V} .
- 4°) En déduire tous les potentiels de \vec{V} .

23 On considère le champ de vecteurs
$$\vec{V}(x, y) = \begin{pmatrix} 2xy \\ x^2 \end{pmatrix}$$
.

- 1°) Représenter \vec{V} au point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, au point $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et au point $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
- 2°) Démontrer que \vec{V} admet un potentiel.
- 3°) Vérifier que $f(x, y) = x^2 y$ est un potentiel de \vec{V} .
- 4°) En déduire tous les potentiels de \vec{V} .

24 Déterminer si le champ de vecteurs \vec{V} admet un potentiel. Si la réponse est oui, déterminer tous les

1°)
$$\vec{V}(x, y) = \begin{pmatrix} x^2 \\ \sin y \end{pmatrix}$$
 2°) $\vec{V}(x, y) = \begin{pmatrix} \sin y \\ (\cos y)x \end{pmatrix}$ 3°) $\vec{V}(x, y) = \begin{pmatrix} e^x + y \\ x \end{pmatrix}$ 4°) $\vec{V}(x, y) = \begin{pmatrix} e^x y^2 \\ 2ye^x + e^y \end{pmatrix}$

5°)
$$\vec{V}(x, y) = \begin{pmatrix} e^x + \sin y \\ (\cos y)x + y^2 \end{pmatrix}$$
.

- **25** Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = x^2 + 3xy^2 15x 12y$.
- 1°) Déterminer le ou les point(s) critique(s) de f sur \mathbb{R}^2 . On pourra utiliser la calculatrice.
- 2°) Calculer la matrice hessienne $H(x, y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y} \end{bmatrix}$ et le déterminant de cette matrice.
- 3°) La fonction f admet-elle des extremums ?

26 Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = x^4 + y^3 - 4y - 2$.

1°) Déterminer le ou les point(s) critique(s) de f sur \mathbb{R}^2 .

2°) Calculer la matrice hessienne
$$H(x, y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$
 et le déterminant de cette matrice.

 3°) La fonction f admet-elle des extremums ?

27 Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = x^3 + 3xy^2 - 15x - 12y$.

1°) Déterminer le ou les point(s) critique(s) de f sur \mathbb{R}^2 .

2°) Calculer la matrice hessienne
$$H(x, y) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$
 et le déterminant de cette matrice.

 3°) La fonction f admet-elle des extremums ?

$$\boxed{\textbf{28}} \text{ Soit } f \text{ la fonction définie sur } \mathbb{R}^3 \text{ par } f\left(x,\,y,\,z\right) = \frac{xyz}{x^2+y^2+z^2} \text{ si } \left(x,\,y,\,z\right) \neq \left(0,\,0,\,0\right) \text{ et } f\left(0,\,0,\,0\right) = 0 \ .$$

- 1°) Étudier la continuité de *f*.
- 2°) Démontrer que f est dérivable en (0, 0, 0) selon tout vecteur non nul.
- 3°) La fonction f est-elle de classe C^1 sur \mathbb{R}^3 ?

29 Soit f la fonction définie sur \mathbb{R}^3 par $f(x, y, z) = xe^y + ye^z + ze^x$.

1°) Démontrer que si (x, y, z) est un point critique de f, alors xyz = -1, x < 0, y < 0, z < 0.

Donner un point critique de f.

2°) a) Soit (x, y, z) un point critique. On pose $a = e^x$, $b = e^y$, $c = e^z$.

Exprimer les dérivées partielles secondes de f en (x, y, z) en fonction de a, b, c.

b) La fonction f admet-elle des extremums locaux ?

Indication: on pourra utiliser la formule de Taylor.

30 Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = e^{xy}$.

Calculer $\frac{\partial^n f}{\partial x^n}(x, y)$, $\frac{\partial^n f}{\partial y^n}(x, y)$, $\frac{\partial^{m+n} f}{\partial x^n}(x, y)$ où m et n sont des entiers naturels quelconques.

31 Soit φ une fonction de classe C^2 de \mathbb{R} dans \mathbb{R} .

1°) On considère la fonction f définie par $f(x, y) = \varphi(xy)$.

Calculer
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$.

2°) Même question avec la fonction g définie par $g(x, y) = \varphi(x+y)$.

 $\boxed{32}$ 1°) Soit *F* une fonction de classe C¹ de \mathbb{R} dans \mathbb{R} .

On considère la fonction g définie par g(t) = F(t, y(t)).

Calculer g'(t).

2°) Application

Soit y une fonction définie et dérivable sur un intervalle I telle que pour tout réel t appartenant à I on ait : $y'(t)(-t\sin(ty(t))) - y(t)\sin(ty(t)) = 0$

Démontrer qu'il existe une constante k telle que pour tout réel t dans I on ait $\cos(ty(t)) = k$.

33 Soit F une fonction de classe C^2 définie sur]0; $+\infty$ [à valeurs dans \mathbb{R} .

On note G la fonction définie sur l'ouvert $\Omega =]0 ; + \infty[\times]0 ; + \infty[\text{ par } G(x, y) = F(xy) - F(x) - F(y).$

- 1°) Démontrer que a = (1, 1) est un point critique de G.
- 2°) On pose m = F'(1) + F''(1).

La fonction G présente-t-elle un extremum local en a lorsque :

- m > 0?
- 3°) Dans cette question, on considère la fonction f définie sur $]0; +\infty[$ par $f(t) = \frac{\ln(1+t)}{t}$.

On note F la primitive de f qui s'annule en 0.

- a) Démontrer que a est l'unique point critique de G.
- b) La fonction G admet-elle un extremum local en a?

34 On considère la fonction définie par $f(x, y) = x \times \ln y - y \times \ln x$.

Démontrer que (e ; e) est un point critique.

Faire un développement limité de f(e-h;e+h); en déduire la nature de ce point critique.

Soit f la fonction définie sur \mathbb{R}^2 par $f(x, y) = e^{axy}$ où a est un réel fixé.

Calculer
$$\frac{\partial^n f}{\partial x^n}(x, y)$$
, $\frac{\partial^n f}{\partial y^n}(x, y)$, $\frac{\partial^{m+n} f}{\partial^m x \partial^n y}(x, y)$.

36 Soit *n* un entier naturel supérieur ou égal à 2.

On note P_n l'ensemble des polynômes de $\mathbb{R}[X, Y]$ homogènes de degré n;

$$\mathbf{Q}_n = \{ XY P(X, Y), P \in \mathbf{P}_{n-1} \} ;$$

$$\mathbf{R}_n = \{ P \in \mathbf{P}_n / \frac{\partial^2 P}{\partial X \partial Y} = 0 \}.$$

Démontrer que l'on a : $\mathbf{P}_n = \mathbf{Q}_n \oplus \mathbf{R}_n$.

34 On considère la fonction définie par $f(x, y) = x \times \ln y - y \times \ln x$.

1°) Démontrer que si (a, b) est un point critique de f, alors $\ln b - \frac{b}{a} = 0$ et $\ln a - \frac{a}{b} = 0$.

Démontrer ensuite que si l'on pose $x_0 = \frac{a}{b}$, alors $g(x_0) = 0$ où g est la fonction $x \mapsto x^2 - x \ln x - 1$.

En déduire la valeur de x_0 puis que (e ; e) est le seul point critique.

2°) Faire un développement limité en 0 de f(e-h;e+h); en déduire la nature de ce point critique.

35 On considère la fonction définie sur $D = \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ par $f(x, y) = x + y + \frac{1}{xy}$.

1°) Démontrer que le points (1, 1) est le seul point critique de f.

2°) a) Démontrer que pour tout $(x, y) \in D$, on a : $f(x, y) - f(1, 1) = (\sqrt{x} - \sqrt{y})^2 + 2\sqrt{xy} + \frac{1}{yy} - 3$.

b) On pose
$$g(X) = 2X + \frac{1}{X^2} - 3$$
.

Démontrer que pour tout $X \in \mathbb{R}_{+}^{*}$, on a $g(X) \ge 0$.

c) Démontrer que pour tout $(x, y) \in D$, on a : $f(x, y) - f(1, 1) \ge 0$. Que peut-on en conclure ?

36 Déterminer les extremums de la fonction $f:(x, y) \mapsto e^x + e^y + e^{1-x-y}$ sur l'intervalle [0, 1].

(On rappelle que la moyenne géométrique de trois nombres positifs ou nuls est toujours inférieure ou égale à leur moyenne arithmétique).

[37] 1°) Établir que l'équation $e^{-x} = x$ admet une unique solution dans \mathbb{R} .

2°) On considère la fonction f définie sur \mathbb{R}^2 par $f(x, y) = x^2 - 2xy + 2y^2 + e^{-x}$.

a) Démontrer que f admet un unique point critique (x_0, y_0) et établir que $\begin{cases} x_0 - \mathrm{e}^{-x_0} = 0 \\ y_0 = \frac{x_0}{2} \end{cases}.$

b) Démontrer que f admet un extremum local en (x_0, y_0) . Est-ce un minimum ou un maximum ?

c) Vérifier que $f(x_0, y_0) = \frac{{x_0}^2}{2} + x_0$ et déterminer une valeur approchée de $f(x_0, y_0)$.

38 On considère la fonction définie sur $\mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$ par $f(x, y) = \frac{\ln x}{y} + \frac{\ln y}{x}$.

Démontrer que (e; e) est un point critique de f. f admet-elle un extremum local en (e; e)?

39 Soit a un réel strictement positif.

On considère la fonction f définie sur \mathbb{R}^2 par $f(x, y) = x^3 + y^3 - 3axy$.

Déterminer les points critiques de f.

Déterminer les extremums locaux et préciser leur nature.

Corrigé

1 Le point (0, 0) est le seul point critique de f mais f n'admet pas d'extremum en ce point.

N.B.: La condition sur les dérivées secondes donne : $rt - s^2 = 0$; par conséquent, elle ne permet pas de conclure.

 $\boxed{2}$ Le point (1, 1) est un point critique mais f n'admet pas d'extremum en ce point.

$$f(1,1) = \frac{3}{2}$$
 et $f(1+h, 1+h) \approx \frac{3h}{2}$

$$\boxed{3}$$
 2°) $(0,0)$; $(0,-1)$; $(0,1)$; $(1,1)$; $(1,-1)$; $(1,0)$; $(-1,-1)$; $(-1,1)$; $(-1,0)$.

4 1°) a) f(0,0) = 0 b) $f(h,h) \ge 0$; $f(h,-h) = 2h^4 - 4h^2 < 0$ dans un voisinage de 0.

Le point (0, 0) n'est pas un extremum.

2°)
$$(0,0)$$
; $(-1,1)$; $(1,-1)$. On a: $f(0,0)=0$; $f(-1,1)=f(1,-1)=-2$.

[5] 1°) Le seul point critique est (-1,0).

2°) a) Faire attention à distinguer deux cas : $x \ge 0$ et $x \le 0$.

6 Les seuls points critiques sont (0, 1) et (0, -1). f admet un maximum global en (0, 1) et un minimum global en (0, -1).

12 On considère le chemin (la courbe paramétrée) $\gamma: t \mapsto (x \star y, t)$.

$$g = f \circ \gamma$$

$$\gamma: t \mapsto (u(t), v(t))$$

On applique la formule de dérivation d'une composée $g'(t) = \frac{\partial f}{\partial x} (\gamma(t)) \times u'(t) + \frac{\partial f}{\partial y} (\gamma(t)) \times v'(t)$.

$$g'(z) = \frac{\partial f}{\partial x}(x \star y, z) \times 0 + \frac{\partial f}{\partial y}(x \star y, z) \times 1 = \frac{\partial f}{\partial y}(x \star y, z)$$

$$g'(e) = \frac{\partial f}{\partial y}(x \star y, e)$$

Ensuite, on considère les fonctions $l: t \mapsto y \star t$ et $h: t \mapsto x \star t$.

On a : $g = h \circ l$ (on utilise l'associativité de la loi *).

$$g'(t) = l'(t) \times h'[l(t)]$$

En fait l'énoncé marcherait en supposant simplement que la loi * est associative et possède un élément neutre.

$$\boxed{13} \frac{\partial^2 f}{\partial x^2} (0, 0) = -\frac{1}{2} ; \frac{\partial^2 f}{\partial y^2} (0, 0) = -\frac{1}{2} ; \frac{\partial^2 f}{\partial x \partial y} (0, 0) = 1$$

$$rt - s^2 = \frac{1}{4} - 1 = -\frac{3}{4}$$

$$25 \quad \begin{cases} \frac{\partial f}{\partial x}(x, y) = 2x + 3y^2 - 15 \\ \frac{\partial f}{\partial y}(x, y) = 6xy - 12 \end{cases}$$

$$\frac{\partial f}{\partial y}(x, y) = 0 \iff y^3 - 15y + 4 = 0$$
$$\iff (y+4)(y^2 - 4y + 1) = 0$$
$$\iff y = -4 \text{ ou } y = 2 + \sqrt{3} \text{ ou } y = 2 - \sqrt{3}$$

$$\left(-\frac{33}{2}, -4\right), \left(-3 - 6\sqrt{3}, 2 + \sqrt{3}\right), \left(-3 + 6\sqrt{3}, 2 - \sqrt{3}\right)$$

$$\boxed{26} \ 1^{\circ}) \left(0, -\frac{2}{\sqrt{3}}\right) \operatorname{et}\left(0, \frac{2}{\sqrt{3}}\right)$$

Le point (1; 2) est le seul point critique de f.

$$2^{\circ}) H(x, y) = \begin{pmatrix} 12x & 0 \\ 0 & 6y \end{pmatrix}$$

 $\det H(x, y) = 72x^2y$

3°)
$$g(y) = y^3 - 4y - 2$$

[27] 1°) Le point (1; 2) est le seul point critique de f.

2°)
$$H(x, y) = \begin{pmatrix} 6x & 6y \\ 6y & 6x \end{pmatrix}$$

 $\det H(x, y) = 36x^2 - 36y^2$

3°) $\det H(1,2) < 0$ donc le point (1; 2) est un point col.

28 1°) f est continue en (0, 0, 0) (le mieux est de passer en polaires).

2°) f(ta, tb, tc) = tf(a, b, c) (la fonction f est homogène)

La dérivée de f en (0, 0, 0) selon le vecteur (a, b, c) est égale à f(a, b, c)

3°) La fonction f n'est pas de classe C^1 sur \mathbb{R}^3 sinon la dérivée de f en (0, 0, 0) selon tout vecteur non nul devrait être nulle, ce qui n'est pas.

$$\boxed{29} \ 1^{\circ}) \ \frac{\partial f}{\partial x}(x, y, z) = e^{y} + ze^{x} \ ; \ \frac{\partial f}{\partial y}(x, y, z) = xe^{y} + e^{z} \ ; \ \frac{\partial f}{\partial z}(x, y, z) = ye^{z} + e^{x}$$

$$e^{y-x} = -z$$

$$e^{z-y} = -x$$

$$e^{x-z} = -v$$

On multiplie membre à membre.

(-1, -1, -1) est un point critique de f.

2°)

$$\frac{\partial^2 f}{\partial x^2}(x, y, z) = ze^x = -b \; ; \quad \frac{\partial^2 f}{\partial y^2}(x, y, z) = xe^y = -c \; ; \quad \frac{\partial^2 f}{\partial z^2}(x, y, z) = ye^z = -a$$

$$\frac{\partial^2 f}{\partial x \partial y}(x, y, z) = b \; ; \quad \frac{\partial^2 f}{\partial y \partial z}(x, y, z) = c \; ; \quad \frac{\partial^2 f}{\partial x \partial z}(x, y, z) = b$$

On pose
$$Q(h) = \frac{\partial^2 f}{\partial x^2}(X)h_1^2 + \frac{\partial^2 f}{\partial y^2}(X)h_2^2 + \frac{\partial^2 f}{\partial z^2}(X)h_3^2 + 2\frac{\partial^2 f}{\partial x \partial y}(X)h_1h_2 + 2\frac{\partial^2 f}{\partial y \partial z}(X)h_2h_3 + 2\frac{\partial^2 f}{\partial x \partial z}(X)h_1h_3$$
.

$$Q(h) = -bh_1^2 - ch_2^2 - ah_3^2 + 2ch_1h_2 + 2ah_2h_3 + 2bh_1h_3$$

Si *X* est un point critique, on a : $f(X+h) = f(X) + \frac{1}{2}Q(h) + ||h||^2 \varepsilon(h)$

$$Q(r,0,0) = -br^2 < 0$$

$$Q(r,r,r) = (a+b+c)r^2 > 0$$

Aucun point critique n'est pas un extremum local.

32 Considérer la fonction F définie par $F(t, y) = \cos(ty)$.

$$\frac{\partial G}{\partial x}(x, y) = yF'(xy) - F'(x), \quad \frac{\partial G}{\partial y}(x, y) = xF'(xy) - F'(y), \quad \frac{\partial G}{\partial x}(1, 1) = F'(1) - F'(1) = 0$$

$$2^{\circ}) \quad \frac{\partial^{2}G}{\partial x^{2}}(x, y) = y^{2}F''(xy) - F''(x), \quad \frac{\partial^{2}G}{\partial x^{2}}(a, a) = 0$$

$$\frac{\partial^2 G}{\partial y^2}(x, y) = x^2 F''(xy) - F''(y) \frac{\partial^2 G}{\partial y^2}(a, a) = 0$$

$$\frac{\partial^2 G}{\partial x \partial y}(x, y) = F'(xy) + xyF''(xy)$$

$$\frac{\partial^2 G}{\partial x \partial y}(a) = F'(1) + F''(1)$$

$$\left(\frac{\partial^2 G}{\partial x \partial y}(a)\right)^2 - \frac{\partial^2 G}{\partial x^2}(a)\frac{\partial^2 G}{\partial y^2}(a) < 0$$

$$\boxed{\mathbf{36}} \quad \sqrt[3]{e^x e^y e^{1-x-y}} \le \frac{e^x + e^y + e^{1-x-y}}{3} \quad \text{soit } 3e^{\frac{1}{3}} \le f(x, y)$$

Il y a égalité si et seulement si x = y = 1 - x - y soit $x = y = \frac{1}{3}$.

$$\boxed{\textbf{37}} \ 2^{\circ}) \ b) \ \frac{\partial^2 f}{\partial x^2} (x, y) = 2 + e^{-x} \ ; \ \frac{\partial^2 f}{\partial y^2} (x, y) = 4 \ ; \ \frac{\partial^2 f}{\partial x \partial y} (x, y) = -2$$

$$\Delta = \left[\frac{\partial^2 f}{\partial x \partial y} (x_0, y_0) \right]^2 - \frac{\partial^2 f}{\partial x^2} (x_0, y_0) \times \frac{\partial^2 f}{\partial y^2} (x_0, y_0) = 4 - (8 + 4x_0) = -4(x_0 + 1) < 0 \rightarrow \text{extremum local}$$
(minimum)

$$\boxed{\mathbf{38}} \frac{\partial^2 f}{\partial x^2}(x, y) = \frac{2 \ln y}{x^3} - \frac{1}{x^2 y}; \frac{\partial^2 f}{\partial y^2}(x, y) = \frac{2 \ln x}{y^3} - \frac{1}{y^2 x}; \frac{\partial^2 f}{\partial x \partial y}(x, y) = -\frac{1}{xy^2} - \frac{1}{yx^2}$$

$$\Delta = \left[\frac{\partial^2 f}{\partial x \partial y}(\mathbf{e}, \mathbf{e})\right]^2 - \frac{\partial^2 f}{\partial x^2}(\mathbf{e}, \mathbf{e}) \times \frac{\partial^2 f}{\partial y^2}(\mathbf{e}, \mathbf{e}) = 0 - \left(\frac{1}{\mathbf{e}^3}\right)^2 < 0 \rightarrow \text{extremum local}$$

Questions de cours

- 1 Définition des dérivées partielles. Définition du gradient. Dérivée partielle d'une somme, d'un produit, d'un quotient...
- 2 Dérivées directionnelles.
- 3 Expression d'une dérivée directionnelle à l'aide des dérivées partielles (énoncé et démonstration).
- \blacksquare Signification de dx et dy (1-forme).
- 5 Définition d'un extremum local et d'un extremum global pour une fonction de deux variables.

 Condition nécessaire d'extremum pour une fonction de deux variables de classe C¹. Points critiques.

 Comparaison avec le cas d'une fonction d'une seule variable.
- 6 Définition des dérivées partielles secondes ; théorème de Schwartz. Contraposée du théorème de Schwartz.
- 7 Formule de dérivée d'une composée.
- 8 Changement de variable en coordonnées polaires.
- 9 Caractérisation des fonctions constantes à l'aide du gradient.
- 10 Lemme d'extension

Soit f une fonction définie sur \mathbb{R} de classe \mathbb{C}^1 .

Les fonctions $(x; y) \mapsto f(x)$ et $(x; y) \mapsto f(y)$ sont de classe \mathbb{C}^1 sur \mathbb{R}^2 .

- 11 Dérivée d'une fonction selon un champ de vecteurs. Opérateur de dérivation attaché à un champ.
- **12** Définition d'une fonction de classe C^1 sur un ouvert \mathbb{R}^2 .

Propriété:

Si une fonction est de classe C¹ sur un ouvert, alors elle admet une dérivée directionnelle selon tout vecteur non nul.

- 13 Développement limité à l'ordre 1 en un point pour une fonction de deux variables.
- Si f est de classe \mathbb{C}^1 sur un ouvert de \mathbb{R}^2 , alors elle admet un développement limité à l'ordre 1 en tout point.
- 14 Développement limité à l'ordre 2 en un point d'une fonction de deux variables.
- 15 Opérateurs de dérivation en coordonnées polaires.
- 16 Théorème d'approximation différentielle (énoncé).
- 17 Dérivée de f o γ où γ est une courbe paramétrée de I dans Ω ouvert de \mathbb{R}^2 et f une fonction de Ω dans \mathbb{R} .