Blanche de Castille Terminale S

MATHEMATIQUES

Devoir N°4 - Baccalauréat Blanc

Term.S 07.02.09

La présentation et la qualité de la rédaction entreront pour une part importante dans l'appréciation de la copie.

L'usage de la calculatrice n'est pas autorisé.

EXERCICE 1. [1,5+(1+4,5) = 7 sur 40]

- 1. Rappeler l'énoncé de la formule du binôme de Newton (la démonstration n'est pas demandée).
- 2. 2.1. Soit $x \in \mathbb{R}$. Donner le coefficient de x^{14} dans le développement de $(x+2)^{16}$.
 - 2.2. Soit $n \in \mathbb{N}$. Donner une expression simplifiée des expressions suivantes :

$$\sum_{k=0}^{n} \binom{n}{k} \times 2^{n-k} \times 3^{k} ;$$

$$\sum_{k=0}^{n} \frac{\binom{n}{k}}{2^{k}};$$

$$\sum_{k=0}^{10} \binom{10}{k} \times 3^{2k} .$$

EXERCICE 2. [1+1,5+(1+1,5)+(1+3)=9 sur 40]

On considère la fonction f définie à l'aide des trois paramètres réels a, b et c sur l'intervalle]0; $+\infty[$ par $f(x) = x[a(\ln x)^2 + b\ln x + c]$.

- 1. Pour $x \in]0; +\infty[$, calculer f'(x) en fonction de a, b et c.
- 2. On donne $f'(\frac{1}{e}) = 0$, $f'(\sqrt{e}) = 0$ et f'(e) = 2.

Calculer les valeurs de a, b et c.

On admet que quel que soit $x \in]0$; $+\infty[$, on a $f(x) = x[2(\ln x)^2 - 3\ln x + 2].$

- 3. 3.1. Déterminer la limite de f en $+\infty$.
 - 3.2. En utilisant le changement de variable $X = -\ln x$, déterminer la limite de f en 0 à droite.
- 4. 4.1. Démontrer que quel que soit $x \in]0$; $+\infty[$, on a $f'(x) = (\ln x + 1)(2\ln x 1)$.
 - 4.2. Etudier le sens de variation de *f*, déterminer les valeurs des extrema locaux et dresser le tableau de variation de *f*.

DS4 - Baccalauréat Blanc Page 1 sur 3

Blanche de Castille Terminale S

EXERCICE 3. [[1,5+2,5+1]+[2+(1+1+1)+(1+3+1)+2] = 20 sur 40]

PARTIE A: Etude d'une fonction auxiliaire.

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = e^x(1-x) + 1$.

- 1. Etudier le sens de variation de *g*.
- 2. Démontrer que l'équation g(x) = 0 possède une unique solution dans \mathbb{R} . On admettra que cette solution appartient à l'intervalle [1,27; 1,28] et on la notera α .
- 3. Déterminer le signe de g(x) sur \mathbb{R} .

PARTIE B: Etude d'une fonction f.

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = \frac{x}{e^x + 1} + 2$.

On désigne par \mathcal{L} la courbe représentant f dans un repère orthogonal (O, \vec{i}, \vec{j}) du plan (unités : 1cm en abscisse et 2 cm en ordonnée).

- 1. Déterminer la limite de f en $+\infty$ et interpréter graphiquement le résultat.
- 2. 2.1. Déterminer la limite de f en $-\infty$.
 - 2.2. Démontrer que la droite \mathbf{D} d'équation y = x + 2 est asymptote à \mathbf{C} .
 - 2.3. Déterminer la position de \mathcal{L} par rapport à \mathcal{D} .
- 3. 3.1. Démontrer que quel que soit $x \in \mathbb{R}$, f'(x) a le même signe que g(x), où g est la fonction définie dans la partie A.
 - 3.2. Déterminer deux entiers p et q tels que $f(\alpha) = p\alpha + q$, α étant la valeur définie dans la partie A. Donner une équation de la tangente à $\boldsymbol{\mathcal{C}}$ au point d'abscisse α .
 - 3.3. Dresser le tableau de variation de f.
- 4. Tracer la courbe \mathcal{C} et ses éléments caractéristiques ainsi que la tangente au point A d'abscisse 0.
- 5. Question hors barème (qui ne figurait pas dans l'énoncé du bac blanc)

Soit B le point de \mathcal{C} d'abscisse $-\alpha$.

Calculer l'ordonnée de B et démontrer que la tangente T à \mathcal{L} au point B est parallèle à \mathcal{D} .

DS4 - Baccalauréat Blanc Page 2 sur 3

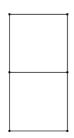
Blanche de Castille Terminale S

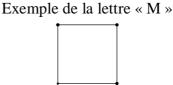
EXERCICE 4. Cet exercice ne concerne que les élèves qui NE SUIVENT PAS l'enseignement de spécialité. [[1+1]+[1+2+2] = 7 sur 40]

Les deux parties A et B sont indépendantes.

PARTIE A.

Un caractère de l'écriture Braille, destinée aux malvoyants, est formé de points obtenus en piquant l'un des six points de la grille ci-dessous.





- 1. Combien de caractères Braille peut-on ainsi former ?
- 2. Combien de caractères sont formés de quatre points ?

<u>Partie B.</u>

Pour tout entier naturel n supérieur ou égal à 3, on appelle u_n le nombre de diagonales d'un polygone convexe à n côtés que l'on peut former.

On rappelle qu'un polygone est dit « convexe » lorsqu'aucun de ses angles n'est supérieur à 180°.

- 1. 1.1. Démontrer que, pour $n \in \mathbb{N}$, $n \ge 3$, $u_{n+1} = u_n + n 1$.
 - 1.2. En déduire, en utilisant un raisonnement par récurrence, que quel que soit $n \in \mathbb{N}$, $n \ge 3$, on a

$$u_n=\frac{n(n-3)}{2}.$$

2. On considère un dodécagone convexe (polygone convexe à 12 côtés). On suppose que ce dodécagone est tel qu'il n'y a pas deux diagonales parallèles ni trois diagonales concourantes.

Utiliser un raisonnement d'analyse combinatoire pour donner le nombre de points d'intersections de toutes les diagonales entre elles, à l'intérieur ou à l'extérieur du dodécagone.

<u>EXERCICE 4. Cet exercice ne concerne que les élèves qui SUIVENT l'enseignement de spécialité.</u> [1,5+1,5+(1,5+1,5)+1=7 sur 40]

Le plan \boldsymbol{P} est muni d'un repère orthonormal (O, \vec{i}, \vec{j}) . Soit F l'application de \boldsymbol{P} dans lui-même qui à tout point

M(x, y) associe le point M'(x', y') tel que $\land \begin{cases} x' = \frac{-1}{2}x + \frac{\sqrt{3}}{2}y + 1\\ y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y - 1 \end{cases}$.

- 1. Montrer que F est une isométrie de **P**.
- 2. Déterminer une translation T et une isométrie G fixant le point O telles que F = T o G.
- 3. 3.1. Déterminer l'ensemble des points fixes de G.
 - 3.2. En déduire la nature de G.
- 4. Schématiser A' = F(A) pour A(-1; 2) en utilisant ces résultats. Expliquer la construction.

DS4 - Baccalauréat Blanc Page 3 sur 3