T spécialité

Interrogation écrite du mardi 16 mai 2023

50 minutes

Numéro:

Prénom et nom :

Note: / 20

I. (2 points)

On considère la fonction $f: x \mapsto \frac{1}{\sqrt{x}}$ et l'on note \mathcal{C} sa courbe représentative dans le plan muni d'un repère orthogonal (O, I, J). On se référera au graphique donné sur la feuille annexe.

Calculer l'aire \mathcal{A} en unité d'aire du domaine limité par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations x=1 et x=4.

.....

II. (2 points)

On considère la fonction $f: x \mapsto \frac{x}{\sqrt{9-x^2}}$ et l'on note \mathcal{L} sa courbe représentative dans le plan muni d'un repère orthogonal (O, I, J). On se référera au graphique donné sur la feuille annexe.

Calculer l'aire \mathcal{A} en unité d'aire du domaine limité par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations x=1 et x=2.

.....

III. (2 points : 1 point par intégrale)

Compléter les égalités suivantes : $\int_{-4}^{-2} \frac{dx}{x} = \dots$

$$\int_{0}^{1} e^{2x-1} dx = \dots$$

Écrire le détail des calculs au verso de la feuille annexe.

IV. (2 points)

Soit n un entier naturel quelconque supérieur ou égal à 1.

Compléter l'égalité suivante :

$$\int_{0}^{\ln 2} e^{x} (e^{x} - 1)^{n} dx = \dots$$

On donnera le résultat sous la forme la plus simple possible.

V. (1 point)

Soit f une fonction définie et continue sur l'intervalle I = [-1; 2] dont la valeur moyenne sur I est égale à 4.

Quelle est la valeur de $\int_{-1}^{2} f(x) dx$?

..... (une seule réponse sans égalité)

VI. (6 points : 1°) 2 points ; 2°) 2 points ; 3°) 2 points)

Pour tout réel a, on pose $I(a) = \int_0^{\ln 2} \frac{e^{ax}}{e^x + 1} dx$.

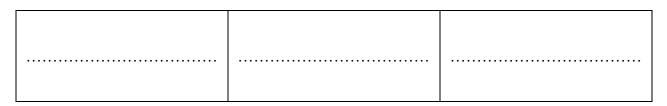
On écrira les trois résultats dans les cases du tableau ci-dessous.

- 1°) Calculer I(1).
- 2°) Calculer I(2).

Indication : Vérifier d'abord que pour tout réel x on $a: \frac{e^{2x}}{e^x+1} = e^x - \frac{e^x}{e^x+1}$.

 3°) Calculer I(-1).

Indication : Vérifier d'abord que pour tout réel x on a : $\frac{e^{-x}}{e^x + 1} = \frac{e^{-2x}}{e^{-x} + 1}$ puis utiliser ensuite une égalité analogue à celle donnée dans la question précédente.



VII. (4 points : 1°) 2 points ; 2°) 2 points)

Soit *a* un réel strictement positif donné. On pose $I(a) = \int_{1}^{a} \frac{e^{x}}{x} dx$ et $J(a) = \int_{1}^{a} \ln x \times e^{x} dx$.

On ne cherchera pas à calculer I(a) et J(a).

1°) Quel est le signe de I(a) et J(a) pour a réel quelconque strictement supérieur à 1 ?

.....

 2°) À l'aide d'une intégration par parties, exprimer I(a) en fonction de J(a).

.....

VIII. (1 point)

On considère la fonction $F: x \mapsto \int_{1}^{x} \frac{\ln t}{1+t^2} dt$ sur l'intervalle $D =]0; +\infty[$.

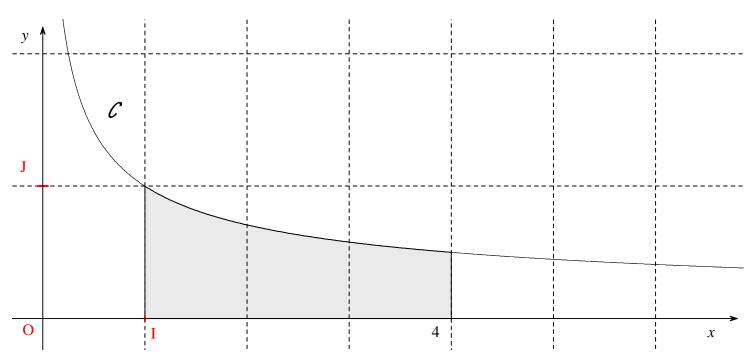
Compléter l'égalité:

 $\forall x \in D \quad F'(x) = \dots$

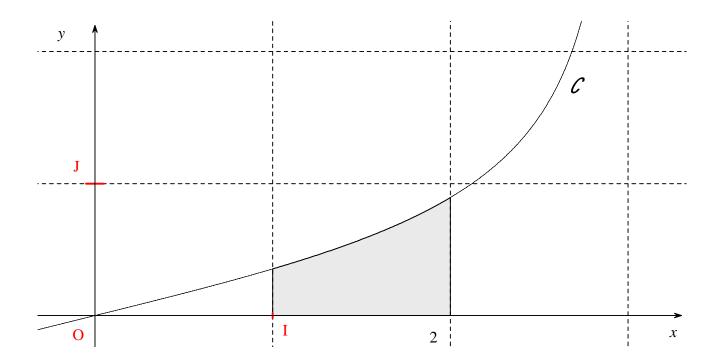
Feuille annexe de l'interrogation écrite du mardi 16 mai 2023

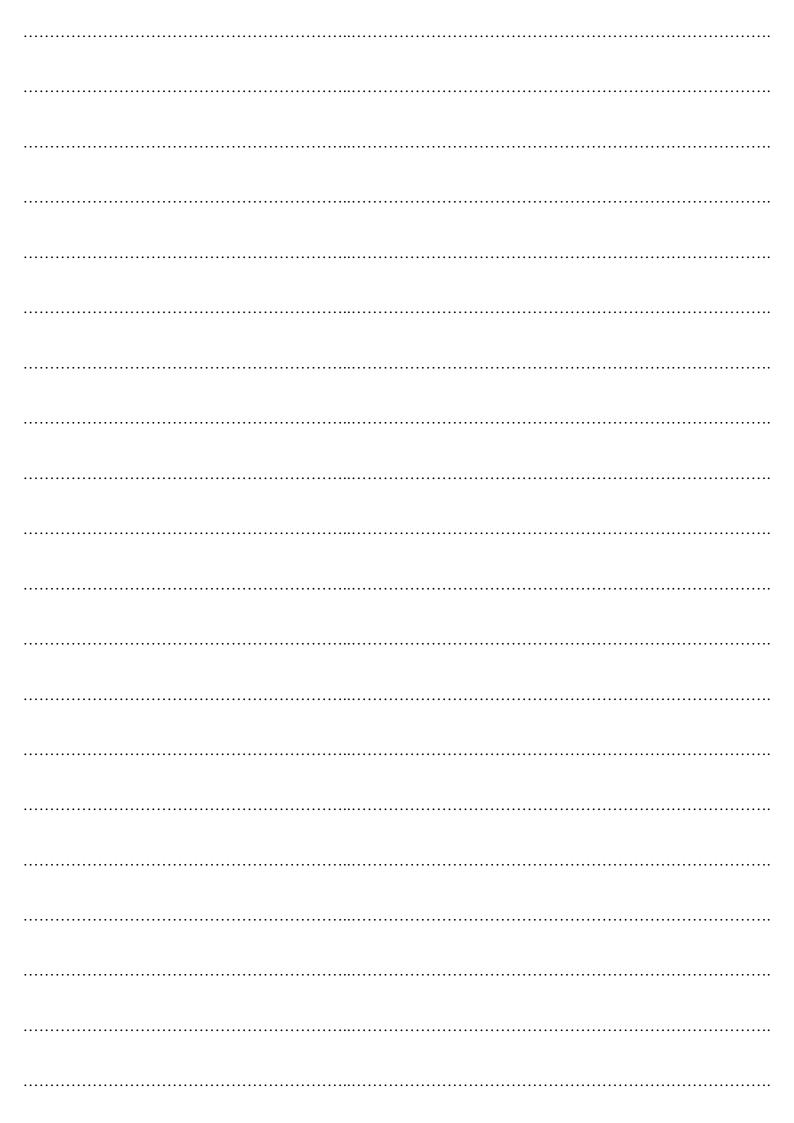
Numéro : Prénom et nom :

I.



II.





Corrigé de l'interrogation écrite du 16-5-2023

I.

On considère la fonction $f: x \mapsto \frac{1}{\sqrt{x}}$ et l'on note \mathcal{L} sa courbe représentative dans le plan muni d'un repère orthogonal (O, I, J). On se référera au graphique donné sur la feuille annexe.

Calculer l'aire \mathcal{A} en unité d'aire du domaine limité par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations x = 1 et x = 4.

$$\mathcal{A} = \int_{1}^{4} f(x) dx \text{ (car la fonction } f \text{ est positive ou nulle sur l'intervalle } [1;4])$$

$$= \left[2\sqrt{x}\right]_{1}^{4}$$

$$= 2\sqrt{4} - 2\sqrt{1}$$

$$= 2 \times 2 - 2 \times 1$$

$$= 4 - 2$$

$$= 2 \text{ u. a.}$$

On vérifie le résultat à l'aide de la calculatrice.

II.

On considère la fonction $f: x \mapsto \frac{x}{\sqrt{9-x^2}}$ et l'on note \mathcal{L} sa courbe représentative dans le plan muni d'un repère orthogonal (O, I, J). On se référera au graphique donné sur la feuille annexe.

Calculer l'aire \mathcal{A} en unité d'aire du domaine limité par la courbe \mathcal{C} , l'axe des abscisses et les droites d'équations x=1 et x=2.

$$\mathcal{A} = \int_{1}^{2} f(x) dx \text{ (car la fonction } f \text{ est positive ou nulle sur l'intervalle } [1;2])$$

$$= \left[-\sqrt{9-x^{2}} \right]_{1}^{2} \text{ (on \'ecrit } f(x) = -\frac{1}{2} \times \frac{-2x}{\sqrt{9-x^{2}}} \text{)}$$

$$= -\sqrt{9-2^{2}} + \sqrt{9-1^{2}}$$

$$= \sqrt{8} - \sqrt{5}$$

$$= 2\sqrt{2} - \sqrt{5} \text{ u. a.}$$

On vérifie le résultat à l'aide de la calculatrice.

III.

Compléter les égalités suivantes :
$$\int_{-4}^{-2} \frac{dx}{x} = -\ln 2$$
,
$$\int_{0}^{1} e^{2x-1} dx = \frac{e - e^{-1}}{2}$$
.

Écrire le détail des calculs au verso de la feuille annexe.

$$\int_{-4}^{-2} \frac{dx}{x} = \left[\ln|x| \right]_{-4}^{-2}$$
 (on notera la présence de barres de valeur absolue indispensable ici)

$$= \ln |-2| - \ln |-4|$$

$$= \ln 2 - \ln 4$$

$$= \ln 2 - 2 \ln 2$$

$$=$$
 $-\ln 2$

$$\int_{0}^{1} e^{2x-1} dx = \left[\frac{e^{2x-1}}{2} \right]_{0}^{1}$$

$$= \frac{1}{2} \left[e^{2x-1} \right]_0^1$$
 (ligne facultative)

$$=\frac{e^{1}-e^{-1}}{2}$$
 (on peut aussi écrire $\frac{1}{2}e^{1}-\frac{1}{2}e^{-1}$)

$$=\frac{e-e^{-1}}{2}$$

Une autre forme possible est : $\int_0^1 e^{2x-1} dx = \frac{e^2 - 1}{2e}$. C'est le résultat que donne la calculatrice Numworks quand on tape l'expression $\frac{e - e^{-1}}{2}$

On vérifie les résultats à l'aide de la calculatrice.

Version 6-4-2024 cours particulier avec Solène Rodriguez

$$\int_0^1 e^{2x-1} dx = \left[\frac{1}{2}e^{2x-1}\right]_0^1$$

$$= \frac{1}{2}e^1 - \frac{1}{2}e^{-1}$$

$$= \frac{e^1 - e^{-1}}{2}$$

$$= \frac{e^2 - 1}{2e} \quad \text{(résultat de la calculatrice pas intéressant)}$$

IV.

Soit *n* un entier naturel quelconque supérieur ou égal à 1.

Compléter l'égalité suivante :

$$\int_{0}^{\ln 2} e^{x} (e^{x} - 1)^{n} dx = \frac{1}{n+1}.$$

On donnera le résultat sous la forme la plus simple possible.

$$\int_{0}^{\ln 2} e^{x} (e^{x} - 1)^{n} dx = \left[\frac{(e^{x} - 1)^{n+1}}{n+1} \right]_{0}^{\ln 2} \quad \text{(forme } u \times u^{n})$$

$$= \frac{(e^{\ln 2} - 1)^{n+1}}{n+1} - \frac{(e^{0} - 1)^{n+1}}{n+1}$$

$$= \frac{1}{n+1} - \frac{0}{n+1}$$

$$= \frac{1}{n+1}$$

V.

Soit f une fonction définie et continue sur l'intervalle I = [-1; 2] dont la valeur moyenne sur I est égale à 4.

Quelle est la valeur de $\int_{-1}^{2} f(x) dx$?

12 (une seule réponse sans égalité)

On se réfère à la définition de la valeur moyenne d'une fonction.

Soit f une fonction continue sur un intervalle [a; b] (a < b).

On appelle valeur moyenne de f sur [a; b] le réel $\mu = \frac{1}{b-a} \int_a^b f(x) dx$.

On a:
$$4 = \frac{1}{2 - (-1)} \times \int_{-1}^{2} f(x) dx$$
 soit $4 = \frac{1}{3} \times \int_{-1}^{2} f(x) dx$.

On en déduit que
$$\int_{-1}^{2} f(x) dx = 3 \times 4 = 12.$$

On peut noter éventuellement μ la valeur moyenne de f sur I.

VI.

Pour tout réel a, on pose $I(a) = \int_0^{\ln 2} \frac{e^{ax}}{e^x + 1} dx$.

On écrira les trois résultats dans les cases du tableau ci-dessous.

- 1°) Calculer I(1).
- 2°) Calculer I(2).

Indication : Vérifier d'abord que pour tout réel x on a : $\frac{e^{2x}}{e^x + 1} = e^x - \frac{e^x}{e^x + 1}$.

 3°) Calculer I(-1).

Indication : Vérifier d'abord que pour tout réel x on a : $\frac{e^{-x}}{e^x + 1} = \frac{e^{-2x}}{e^{-x} + 1}$ puis utiliser ensuite une égalité analogue à celle donnée dans la question précédente.

$$I(1) = \ln \frac{3}{2}$$
 $I(2) = 1 + \ln \frac{2}{3}$ $I(-1) = \frac{1}{2} + \ln 3 - 2 \ln 2$

$$I(1) = \int_{0}^{\ln 2} \frac{e^{x}}{e^{x} + 1} dx$$

$$= \left[\ln \left| e^{x} + 1 \right| \right]_{0}^{\ln 2}$$

$$= \left[\ln \left(e^{x} + 1 \right) \right]_{0}^{\ln 2}$$

$$= \ln \left(e^{\ln 2} + 1 \right) - \ln \left(e^{0} + 1 \right)$$

$$= \ln 3 - \ln 2$$

$$= \ln \frac{3}{2}$$

$$I(2) = \int_{0}^{\ln 2} \frac{e^{2x}}{e^{x} + 1} dx$$

$$= \int_{0}^{\ln 2} \left(e^{x} - \frac{e^{x}}{e^{x} + 1} \right) dx \quad \text{(on utilise l'égalité } \frac{e^{2x}}{e^{x} + 1} = e^{x} - \frac{e^{x}}{e^{x} + 1} \quad \text{valable pour tout réel } x)$$

$$= \left[e^{x} - \ln \left| e^{x} + 1 \right| \right]_{0}^{\ln 2}$$

$$= \left[e^{x} - \ln \left(e^{x} + 1 \right) \right]_{0}^{\ln 2}$$

 $= e^{\ln 2} - \ln(e^{\ln 2} + 1) - e^{0} + \ln(e^{0} + 1)$

 $=1-\ln 3 + \ln 2$

 $=1+\ln\frac{2}{3}$

$$I(-1) = \int_0^{\ln 2} \frac{e^{-x}}{e^x + 1} dx$$

$$= \int_0^{\ln 2} \frac{e^{-2x}}{e^{-x} + 1} dx \qquad \text{(on utilise l'égalité } \frac{e^{-x}}{e^x + 1} = \frac{e^{-2x}}{e^{-x} + 1} \text{ valable pour tout réel } x\text{)}$$

$$= \int_{0}^{\ln 2} \left(e^{-x} - \frac{e^{-x}}{e^{-x} + 1} \right) dx \quad \text{(on utilise l'égalité } \frac{e^{2x}}{e^{x} + 1} = e^{x} - \frac{e^{x}}{e^{x} + 1} \text{ qui donne } \frac{e^{-2x}}{e^{-x} + 1} = e^{-x} - \frac{e^{-x}}{e^{-x} + 1}$$

en remplaçant x par -x)

$$= \left[-e^{-x} + \ln \left| e^{-x} + 1 \right| \right]_{0}^{\ln 2}$$

$$= \left[\ln \left(e^{-x} + 1 \right) - e^{-x} \right]_{0}^{\ln 2}$$

$$= \ln \left(e^{-\ln 2} + 1 \right) - e^{-\ln 2} - \ln \left(e^{0} + 1 \right) + e^{0}$$

$$= \ln \left(\frac{1}{2} + 1 \right) - \frac{1}{2} - \ln 2 + 1$$

$$= \ln \frac{3}{2} - \ln 2 + \frac{1}{2}$$

$$= \ln 3 - \ln 2 - \ln 2 + \frac{1}{2}$$

$$= \frac{1}{2} + \ln 3 - 2 \ln 2$$

Autre forme possible du résultat : $I(-1) = \frac{1}{2} + \ln \frac{3}{4}$

VII.

Soit a un réel strictement positif donné. On pose $I(a) = \int_{1}^{a} \frac{e^{x}}{x} dx$ et $J(a) = \int_{1}^{a} \ln x \times e^{x} dx$.

On ne cherchera pas à calculer I(a) et J(a).

On peut noter que I(1) = J(1) = 0 de manière évidente.

1°) Quel est le signe de I(a) et J(a) pour a réel quelconque strictement supérieur à 1?

 $\forall x \in [1; a] \quad \frac{e^x}{x} \ge 0$ et $\ln x \times e^x \ge 0$ (on peut justifier en faisant une analyse du signe des différents « éléments » qui interviennent dans le quotient pour la première inégalité et dans le produit pour la deuxième inégalité).

Les bornes des intégrales qui définissent I(a) et J(a) sont dans le « bon » sens puisque a > 1 par hypothèse, on en déduit que $I(a) \ge 0$ et $J(a) \ge 0$ (propriété du signe d'une intégrale).

Il serait possible de démontrer que I(a) > 0 et J(a) > 0 en utilisant une propriété des intégrales qui sera vue dans le supérieur.

2°) À l'aide d'une intégration par parties, exprimer I(a) en fonction de J(a).

On utilise la formule d'intégration par parties.

On considère la fonction u définie par $u(x) = e^x$ et une fonction v telle que $v'(x) = \frac{1}{x}$.

On peut choisir la fonction v définie par $v(x) = \ln x$ (comme a est strictement positif, l'intervalle fermé borné d'extrémités 1 et a est inclus dans l'intervalle $\left[0; +\infty\right[$; la présence d'une valeur absolue n'est donc pas utile).

On a alors:

$$u(x) = e^{x}$$
; $v'(x) = \frac{1}{x}$
 $u'(x) = e^{x}$; $v(x) = \ln x$.

$$I(a) = \int_{1}^{a} \frac{e^{x}}{x} dx$$

$$= \left[\ln x \times e^{x} \right]_{1}^{a} - \int_{1}^{a} \ln x \times e^{x} dx$$

$$= \ln a \times e^{a} - \ln 1 \times e^{1} - \int_{1}^{a} \ln x \times e^{x} dx$$

$$= \ln a \times e^{a} - \int_{1}^{a} \ln x \times e^{x} dx$$

$$= \ln a \times e^{a} - \int_{1}^{a} \ln x \times e^{x} dx$$

$$= \ln a \times e^{a} - J(a)$$

VIII.

On considère la fonction $F: x \mapsto \int_{1}^{x} \frac{\ln t}{1+t^2} dt$ sur l'intervalle $D =]0; +\infty[$.

Compléter l'égalité:

$$\forall x \in D$$
 $F'(x) = \frac{\ln x}{1+x^2}$

$$\forall x \in D \quad F(x) = \int_{1}^{x} \frac{\ln t}{1+t^2} dt$$

On ne cherche pas à calculer l'intégrale. Il n'est pas possible de déterminer l'expression d'une primitive de la fonction $t \mapsto \frac{\ln t}{1+t^2}$.

Considérons la fonction $u: t \mapsto \frac{\ln t}{1+t^2}$.

La fonction u est continue sur D (quotient de deux fonctions continues sur D, celle du dénominateur ne s'annulant pas sur D).

De plus,
$$\forall x \in D$$
 $F(x) = \int_{1}^{x} u(t) dt$.

D'après le théorème du cours (théorème fondamental de l'analyse), F est dérivable sur D et $\forall x \in D$ F'(x) = u(x) soit $\forall x \in D$ $F'(x) = \frac{\ln x}{1+x^2}$.

On peut dire que F est la primitive de *u* qui s'annule en 1.