Test du mardi 13 janvier 2015 (10 minutes)

Calculatrice non autorisée

Prénom et nom :		Note: / 20	
I. /9	II. / 6	III. /5	
I. Calculer les expressions suivantes :			
A = $\left(\sqrt{3\sqrt{2}}\right)^4$; B = $\frac{\frac{3}{\sqrt{5}}}{\frac{1}{2}}$; C = $\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{5} - 2\right)\left(\sqrt{3} + \sqrt{2}\right)$	2)(√5 + 2)		
$A = (\sqrt{3}\sqrt{2})^{-1}$, $B = \frac{1}{\sqrt{5}}$, $C = (\sqrt{3} - \sqrt{2})(\sqrt{3} - 2)(\sqrt{3} + \sqrt{2})$	2)(√3+2).		
V3			
II. On considère la fonction $f: x \mapsto \frac{1}{4}x(x-3)^2$.			
Calculer $f(\sqrt{2})$ et $f(3-2\sqrt{2})$.	III. Résoudre dans ℝ l'ine	équation $x < x\sqrt{2} - 1$ (1).	

Corrigé du test du 13-1-2015

I.

$$A = \left(\sqrt{3\sqrt{2}}\right)^4$$
$$= \left(3\sqrt{2}\right)^2$$
$$= 18$$

$$B = \frac{\frac{3}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}$$

$$= 3$$

$$C = (\sqrt{3} - \sqrt{2})(\sqrt{5} - 2)(\sqrt{3} + \sqrt{2})(\sqrt{5} + 2)$$

$$= (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})(\sqrt{5} - 2)(\sqrt{5} + 2)$$

$$= ((\sqrt{3})^{2} - (\sqrt{2})^{2})((\sqrt{5})^{2} - 2^{2})$$

$$= (3 - 2)(5 - 4)$$

$$= 1 \times 1$$

$$= 1$$

II.

$$f(\sqrt{2}) = \frac{1}{4}\sqrt{2}(\sqrt{2} - 3)^{2}$$
$$= \frac{1}{4}\sqrt{2}(\sqrt{2} - 3)^{2}$$
$$= \frac{\sqrt{2}}{4}(2 - 6\sqrt{2} + 9)$$
$$= \frac{\sqrt{2}}{4}(11 - 6\sqrt{2})$$

$$f(3-2\sqrt{2}) = \frac{3-2\sqrt{2}}{4} \times (-2\sqrt{2})^2$$
$$= \frac{3-2\sqrt{2}}{4} \times 8$$
$$= \frac{3-2\sqrt{2}}{\cancel{4}} \times \cancel{4} \times 2$$
$$= 6-4\sqrt{2}$$

III.

Résolvons dans \mathbb{R} l'inéquation $x < x\sqrt{2} - 1$ (1).

(1) est successivement équivalente à :

$$x - x\sqrt{2} < -1$$

$$\left(1 - \sqrt{2}\right)x < -1$$

$$x > -\frac{1}{1 - \sqrt{2}}$$
 (car $1 - \sqrt{2} < 0$ donc on change le sens de l'inégalité)
$$x > -\frac{1 + \sqrt{2}}{-1}$$

Soit S l'ensemble des solutions de (1).

$$S = \left] 1 + \sqrt{2} ; + \infty \right[$$

 $x > 1 + \sqrt{2}$

Comment pouvait-on savoir que $1-\sqrt{2} < 0$?

Deux méthodes possibles :

- $\sqrt{2} = 1,414...$ à savoir
- 1 < 2 donc $\sqrt{1} < \sqrt{2}$ soit $1 < \sqrt{2}$ d'où $1 \sqrt{2} < 0$.