1^{ère} T

Séance informatique N°7 (40 minutes)

- <u>Objectifs de la séance</u> : étude de suites appliquées à des situations concrètes à l'aide d'un tableur (suites arithmétiques et géométriques en particulier)
- <u>Connaissances mathématiques mises en œuvres</u> : pourcentages d'évolution et coefficients multiplicateurs, croissances, fonctions
- <u>Techniques informatiques</u>:
 - Créer une feuille de calcul
 - Saisir une formule de calcul
 - Recopier une formule
 - Réaliser un graphique sur tableur

Lorsque l'on utilise un tableur, on dit que l'on ouvre une feuille de calcul. Une feuille de calcul se présente sous la forme d'un tableau....

Début

- Allumer l'ordinateur
- 2 Code informatique de chaque élève
- 3 Aller dans Programmes
- → Salle Info1-lycée
- \rightarrow Office 2007
- → Microsoft Excel

Pour chaque travail, on ouvrira une nouvelle feuille de calcul (Feuille 1, Feuille 2, Feuille 3).

Pour obtenir une nouvelle feuille :

- cliquer sur le Menu Insertion
- puis cliquer sur « Feuille »
- La feuille est maintenant accessible en bas à gauche près des onglets Feuilles 1, 2, 3.

Point-méthode pour le travail 1 : comment écrire dans deux colonnes.

Prendre les deux cellules (avec la croix en bas à droite).

Aller dans Format Cellule. Alignement. Cocher Fusionner les cellules (tout en bas).

Travail 1 Etude de placements d'argent

Paul possède 1 100 €d'économies.

Il décide de placer cette somme dans une banque qui lui propose deux placements :

- **Proposition 1 :** placement de la totalité de la somme à intérêts composés sur un « livret jeune », au taux annuel de 4,5 %.
- **Proposition 2 :** placement de 900 euros à intérêts composés au taux de 5,4 % par an et versement des 200 euros restants sur un compte non rémunéré.

On note c(n) le capital qu'il aura acquis au bout de n années s'il choisit la proposition 1 et u(n) le capital qu'il aura acquis au bout de n années s'il choisit la proposition 2.

On définit ainsi deux suites c et u.

On souhaite réaliser une feuille de calcul sur le modèle ci-dessous.

On choisira un format d'affichage numérique à deux décimales.

	A	В	С	D	E
1		Proposition 1		Proposition	2
2	Rang de l'année n	Capital disponible $c(n)$	Partie rémunérée	Partie non rémunérée	Capital disponible $u(n)$
3	0	1100	900	200	
4					
5					
6					
7					
8					
9					
10					
11					

1°) Reproduire la feuille de calcul ci-dessus.

Deux points techniques:

- Pour écrire sur deux lignes, faire clic droit sur la cellule. Aller dans « Format de cellule » puis « Alignement ». Cocher « Renvoyer à la ligne automatiquement ».
- Pour fusionner les cellules C1, D1 et E1, on sélectionne les trois cellules. Faire clic droit. Aller dans « Format de cellule » puis « Alignement ». Cocher « Fusionner les cellules ».

Taper 0 dans la cellule A3.

Dans la cellule A4, taper la formule = A3 + 1 puis *Entrée*. Sélectionner la cellule A4 puis recopier vers le bas jusqu'à la cellule A1 1.

2°) On observera qu'avec la proposition 1, chaque année le capital disponible est obtenu en multipliant la valeur précédente par $1 + \frac{4,5}{100} = 1,045$ (coefficient multiplicateur).

On parle de suite géométrique de raison 1,045.

Entrer dans la cellule B4 la formule = B3*1,045 et recopier vers le bas afin d'obtenir la plage B3: B11.

- 3°) Dans la cellule C4, rentrer la formule = C3*1,054 et recopier vers le bas sur la plage C3:C11.
- 4°) Les cellules D3 à D11 doivent contenir 200. Pour cela suivre la démarche ci-dessous. Taper 200 dans la cellule D3.

Sélectionner la cellule D3. Se placer sur la petite croix apparaissant en bas à droite puis tirer vers le bas en maintenant la pression avec l'index sur la souris.

Relâcher lorsque l'on arrive en bas à droite de la cellule D11.

- 5°) Rentrer dans la cellule E3 la formule $\boxed{= C3 + D3}$ (le capital disponible est égal à la somme de la partie rémunérée et de la partie non rémunérée) et recopier cette formule vers le bas afin d'obtenir la plage E3 : E11.
- 6°) Indiquer en fonction de la durée du placement la proposition la plus avantageuse. Justifier.

Travail 2 Etude de placements d'argent

À la naissance de leur fils en 2007, des parents bloquent une somme d'argent afin de pouvoir financer d'éventuelles études à sa majorité.

La banque B leur propose un placement à intérêts simples à 5 % par an. La banque C leur propose un placement à intérêts composés à 4,5 % par an. Ils décident de simuler un placement de 5 000 €dans chacune des deux banques.

On note B_n la somme disponible l'année (2007 + n) suite au placement dans la banque B et C_n la somme disponible l'année (2007 + n) suite au placement dans la banque C.

Les parents réalisent une simulation sur tableur en utilisant une feuille de calcul sur le modèle ci-dessous pour les années 2007 à 2025.

	A	В	С
1	année	banque B	banque C
2	2007	5000	5000
3	2008		
4	2009		
5	2010		

1°) Reproduire la feuille de calcul précédente.

On observera qu'il est possible de compléter les cellules A3 à A20 en rentrant une formule simple et en la recopiant vers le bas.

2°) On observera qu'avec la banque B, chaque année le capital disponible est obtenu en ajoutant à la valeur précédente le nombre $\frac{5}{100} \times 5000 = 250$ euros (intérêt annuel fixe).

Il s'agit d'une suite arithmétique de raison 250.

Entrer dans la cellule B3 la formule = B2 + 250 et recopier vers le bas jusqu'à la cellule B20.

3°) On observera qu'avec la banque C, chaque année le capital disponible est obtenu en multipliant la valeur précédente par $1 + \frac{4,5}{100} = 1,045$ (coefficient multiplicateur).

Il s'agit d'une suite géométrique de raison 1,045.

Entrer dans la cellule C3 la formule = C2 *1,045 et recopier vers le bas jusqu'à la cellule C20.

- 4°) Quel est le placement le plus avantageux ?
- 5°) A la suite à ce constat, les parents déposent 10 000 €sur le placement le plus avantageux, au lieu de 5 000 €

Quelle sera la somme disponible à la majorité de leur fils c'est-à-dire pour ses 18 ans ?

Travail 3

Le jour de ses 19 ans, Nicolas se rend à la banque afin de placer 1600 €d'économies qu'il a réalisées les deux années précédentes. Il rencontre alors un responsable commercial qui lui propose d'ouvrir un livret A. Le livret A, rémunéré au taux annuel de 2,75 % à intérêt composés, est plafonné à 15 300 €

Une petite remarque:

Dans l'énoncé, il est précisé que le livret A est plafonné à 15 300 €ce qui signifie que lorsque l'on a atteint cette somme, on ne peut plus mettre d'argent dessus. Mais cette information n'est pas utile pour répondre aux questions.

- 1°) Réaliser une feuille de calcul sur le même modèle que celles réalisées précédemment.
- 2°) A quel âge ses économies dépasseront-elles 5 000 €?

Travail 4

Monsieur Durand dirige une petite entreprise qui fabrique des montres depuis cinquante ans.

Il part à la retraite et confie l'entreprise à son fils Vincent.

Celui-ci constate que si x désigne le nombre de montres vendues dans la journée, le bénéfice, réalisé par jour, en milliers d'euros, est donné par B(x) = $-0.01x^3 + 0.135x^2 + 0.3x - 4.5$.

Il peut produire chaque jour 17 montres au maximum.

Il désire connaître :

- le nombre de montres à produire afin d'obtenir un bénéfice ;
- le nombre de montres à produire afin que ce bénéfice soit maximal.

Pour cela, on utilise un tableur.

1°) Ouvrir une feuille de calcul et réaliser une feuille de calcul sur le modèle ci-dessous.

	A	В
1	Nombre de montres	Bénéfice réalisé en milliers d'euros
2	0	
3		
4		
5		

- 2°) Compléter la colonne A jusqu'à la cellule A19.
- 3°) Dans la cellule B2, rentrer la formule $\boxed{=-0.01*A2 \land 3+0.135*A2 \land 2+0.3*A2-4.5}$.

Une petite remarque:

A2^3 : Quand on tape le « chapeau », celui-ci n'apparaît pas tout de suite. Il n'apparaît que quand on tape le 3.

Recopier cette formule jusqu'à la cellule B19.

- 4°) Répondre aux deux questions que se pose Vincent.
- 5°) Représenter graphiquement la courbe de la fonction B en utilisant l'assistant graphique. Retrouver graphiquement les résultats de la question précédente.

Travail 5

Marc postule pour un emploi dans deux entreprises.

La société ALLCAUR propose à compter du 1^{er} janvier 2008, un contrat à durée déterminé (CDD) de 2 ans avec un salaire net de 1 800 euros le premier mois, puis une augmentation de 0,7 % chaque mois sur la période des 2 ans.

La société CAURALL propose un salaire de départ de 1 750 euros augmenté de 20 euros chaque mois.

Marc utilise un tableur pour visualiser les propositions des deux entreprises.

	A	В	С	D	E	F	G
1	Mois		ALLCAUR			CAURALL	
2			Salaire	Salaire cumulé		Salaire	Salaire cumulé
3	1		1800	1800		1750	1750
4	2						
5	3						
6	4						
7	5						
8	6						
9	7						
10	8						

Une question : Quelle est la différence entre salaire et salaire cumulé ?

Le salaire cumulé est égal à la somme des salaires de toutes les années qui précèdent.

Réaliser cette feuille de calcul en utilisant des formules que l'on recopiera vers le bas (on se bornera à une période de 3 ans).

Correction

Travail 1

	A	В	C	D	E
1		Proposition 1		Proposition 2	
2	Rang de l'année n	Capital disponible $c(n)$	Partie rémunérée	Partie non rémunérée	Capital disponible $u(n)$
3	0	1100,00	900,00	200,00	1100,00
4	1	1149,50	948,60	200,00	1148,60
5	2	1201,23	999,82	200,00	1199,82
6	3	1255,28	1053,81	200,00	1253,81
7	4	1311,77	1110,72	200,00	1310,72
8	5	1370,80	1170,70	200,00	1370,70
9	6	1432,49	1233,92	200,00	1433,92
10	7	1496,95	1300,55	200,00	1500,55
11	8	1564,31	1370,78	200,00	1570,78

6°) A partir de la 5^e année, la proposition 2 est plus avantageuse car à l'année 4, on dispose de plus d'argent avec la proposition 1 mais à l'année 6, on en dispose plus avec la proposition 2 et ce durant plusieurs années.

Travail 2

- 4°) Le placement le plus avantageux est celui de la banque B.
- 5°) La somme disponible à la majorité de leur fils est égale à 14 500 €

Travail 3

2°) Ses économies dépasseront 5000 €à partir de 44 ans.

Travail 4

Le nombre de montres à produire pour réaliser un bénéfice doit être compris dans l'intervalle [7 ; 13]. Le nombre de montres à produire pour obtenir un bénéfice maximal doit être égal à 10.