TS

Équations différentielles (3) Équations différentielles de la forme y'=ay+b (a et b constantes)

I. Résolution

1°) Théorème

Les solutions de l'équation différentielle y'=ay+b $((a;b) \in \mathbb{R}^2, a \neq 0)$ sont les fonctions f définies sur \mathbb{R} par $f(x)=k\mathrm{e}^{ax}-\frac{b}{a}$ $(k\in\mathbb{R})$.

2°) Démonstration

1ère méthode:

Prérequis : résolution des équations différentielles de la forme Y' = mY

$$y' = ay + b$$
 (E) $((a;b) \in \mathbb{R}^2, a \neq 0)$

(E)
$$\Leftrightarrow y' = a \left(\underbrace{y + \frac{b}{a}}_{Y} \right)$$

On pose:
$$Y = y + \frac{b}{a}$$
.

y est dérivable sur \mathbb{R} donc Y est dérivable sur \mathbb{R} .

On a : Y' = y'.

(E) s'écrit donc Y' = aY.

D'après le théorème fondamental, les solutions de cette équation différentielle sont les fonctions F définies sur \mathbb{R} par $F(x) = k e^{\alpha x}$ $(k \in \mathbb{R})$.

On a:
$$y = Y - \frac{b}{a}$$
.

Dons les solutions de (E) sont les fonctions f définies sur \mathbb{R} par $f(x) = ke^{ax} - \frac{b}{a}$ $(k \in \mathbb{R})$.

Vocabulaire : k est appelé un paramètre.

2e méthode:

(1)
$$\Leftrightarrow \forall x \in \mathbb{R} \quad f'(x) - af(x) = b$$

$$\Leftrightarrow \forall x \in \mathbb{R} \quad e^{-ax} \times f'(x) + (-ae^{-ax}) \times f(x) = be^{-ax}$$

On multiplie les deux membres de l'égalité par e^{-ax} , on a bien équivalence car e^{-ax} est non nul.

$$\Leftrightarrow \forall x \in \mathbb{R} \left[f(x) \times e^{-ax} \right]' = be^{-ax}$$

On observe que $e^{-ax} \times f'(x) + (-ae^{-ax}) \times f(x)$ est l'expression de la dérivée de la fonction $x \mapsto e^{-ax} \times f(x)$ (dérivée d'un produit).

$$\Leftrightarrow \exists k \in \mathbb{R} \ / \ \forall x \in \mathbb{R} \quad f(x) \times e^{-ax} = -\frac{b}{a} e^{-ax} + k$$

$$\Leftrightarrow \exists k \in \mathbb{R} / \forall x \in \mathbb{R} \quad f(x) = -\frac{b}{a} + k \frac{k}{e^{-ax}}$$

$$\Leftrightarrow \exists k \in \mathbb{R} / \forall x \in \mathbb{R} \quad f(x) = ke^{ax} - \frac{b}{a}$$

On utilise la propriété $\frac{1}{e^{-ax}} = e^{ax}$.

On a bien raisonné par équivalences.

3°) Exercice

Résoudre (intégrer) l'équation différentielle y' = 2y + 1 (E).

On reconnaît une équation différentielle de la forme y' = ay + b avec a = 2 et b = 1.

Les solutions de (E) sont les fonctions f définies sur \mathbb{R} par $f(x) = ke^{2x} - \frac{1}{2}$ $(k \in \mathbb{R})$.

4°) Bêtise à ne pas faire

Ne pas utiliser la formule lorsque a et b ne sont pas de constantes.

Exemple: y' = 2y + 3x

Ne pas appliquer le théorème.

II. Solution prenant une valeur donnée (problème de Cauchy)

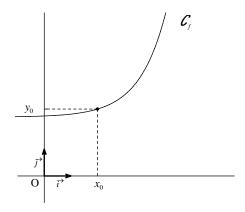
Cauchy: mathématicien français du XIX^e siècle

1°) Théorème

a et b sont deux réels tels que $a \neq 0$.

Pour tout couple $(x_0; y_0)$ de réels, il existe une unique fonction f solution de l'équation différentielle y' = ay + b telle que $f(x_0) = y_0$.

2°) Interprétation graphique



Il existe une unique fonction f solution de l'équation différentielle dont la courbe représentative par le point de coordonnées $(x_0; y_0)$.

3°) Démonstration (ROC)

$$f \colon \mathbb{R} \to \mathbb{R}$$

$$x \mapsto k e^{ax} - \frac{b}{a} \quad (k \in \mathbb{R})$$

On cherche k tel que $f(x_0) = y_0$ (1).

(1)
$$\Leftrightarrow ke^{ax_0} - \frac{b}{a} = y_0$$

 $\Leftrightarrow ke^{ax_0} = y_0 + \frac{b}{a}$
 $\Leftrightarrow k = \left(y_0 + \frac{b}{a}\right)e^{-ax_0}$

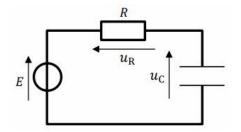
k existe et est unique donc f existe et est unique.

La solution cherchée est la fonction f définie sur \mathbb{R} par $f(x) = \left(y_0 + \frac{b}{a}\right) e^{a(x-x_0)} - \frac{b}{a}$.

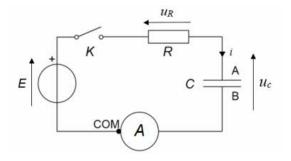
III. Équations différentielles en physique : circuit RC série en électricité

charge d'un condensateur (condensateur de capacité C et résistance R montés en série).

2023-NelleCaledo-J1-Exo3-Sujet-RCHumidite



T spé Sujet de bac physique-chimie-2021-centres-etranger-1-sujet-officiel



https://www.sujetdebac.fr/annales-pdf/2023/spe-physique-chimie-2023-metropole-2-sujet-officiel.pdf modélisation d'un détecteur capacitif d'humidité

On pose: $u = u_C$

 $u_{\rm C}$ est une fonction qui dépend du temps t.

$$t \in [0; +\infty[$$

On suppose que la fonction u_C dérivable sur l'intervalle $[0; +\infty[$.

On établit l'équation différentielle
$$\underbrace{RC}_{\tau} \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = E$$

constante de temps

avec la condition initiale $u_c(0) = 0$.

L'équation différentielle s'écrit
$$\tau \frac{du_C}{dt} + u_C = E$$
 ou encore $\frac{du_C}{dt} = -\frac{1}{\tau}u_C + \frac{E}{\tau}$.

On reconnaît une équation différentielle de la forme y' = ay + b avec $a = -\frac{1}{\tau}$ et $b = \frac{E}{\tau}$.

Donc
$$u_C(t) = ke^{-\frac{t}{\tau}} + E \quad (k \in \mathbb{R}).$$

On se place dans le cas d'une charge.

k est déterminé par la condition initiale $u_c(0) = 0$ donc 0 = k + E d'où k = -E.

On obtient donc
$$u_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

Commentaire:

En physique, on a ce que l'on appelle des « conditions aux limites » ce que l'on n'a pas en mathématiques.

Cette expression permet de voir que u_C est strictement croissante $[0; +\infty[$ (par exemple par dérivation).

On a
$$e^{-\frac{t}{\tau}} \xrightarrow[t \to +\infty]{t \to +\infty} 0$$
 (car $\tau > 0$ donc $-\frac{1}{\tau} < 0$) donc $u_c(t) \xrightarrow[t \to +\infty]{t \to +\infty} E$.

On considère la représentation graphique de u_c en fonction de t.

Elle admet la droite d'équation y = E pour asymptote horizontale en $+ \infty$.

Application : Détermination graphique de la constante de temps par la méthode de la tangente.

On considère la représentation graphique de u_c en fonction de t.

Cette courbe passe par l'origine et la tangente en ce point et la tangente T en ce point a pour équation $y = \frac{E}{\tau}t$ (démonstration très facile).

Pour avoir l'abscisse du point d'intersection de T avec la droite d'équation y = E, on résout l'équation

$$\frac{E}{\tau}t=E\;.$$

On trouve $t = \tau$.

Autre méthode pour déterminer la constante de temps :

On calcule
$$u_C(\tau) = E\left(1 - e^{-\frac{\tau}{\tau}}\right) = E\left(1 - e^{-1}\right)$$
.

Avec la calculatrice, on obtient $1 - e^{-1} = 0.632120...$

$$u_C(\tau) \approx 0.63E$$

Régime transitoire-régime stationnaire

$$u_C(5\tau) = E\left(1 - e^{-\frac{5\tau}{\tau}}\right) = E\left(1 - e^{-5}\right)$$

Avec la calculatrice, on obtient $1-e^{-5} = 0.993262...$

Pour $t \ge 5\tau$, on peut considérer que $u_c(t)$ est « égal » à E à moins de 1 %.

On peut considérer que la tension est constante, ce qui revient à considérer que la courbe représentative est confondue avec l'asymptote horizontale.

De 0 à 5τ, on dit que l'on est en régime transitoire.

À partir de 5τ , on dit que l'on est en régime stationnaire.

Idem pour la décharge.

Dans ce cas, on obtient $u_C(t) = Ee^{-\frac{t}{\tau}}$